
This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

349

Chapter 10 CHAPTER 10

Improving Performance with Shared
Memory and Proper Forking

In this chapter we will talk about two issues that play an important role in optimiz-
ing server performance: sharing memory and forking.

Firstly, mod_perl Apache processes can become quite large, and it is therefore very
important to make sure that the memory used by the Apache processes is shared
between them as much as possible.

Secondly, if you need the Apache processes to fork new processes, it is important to
perform the fork() calls in the proper way.

Sharing Memory
The sharing of memory is a very important factor. If your OS supports it (and most
sane systems do), a lot of memory can be saved by sharing it between child pro-
cesses. This is possible only when code is preloaded at server startup. However, dur-
ing a child process’s life, its memory pages tend to become unshared. Here is why.

There is no way to make Perl allocate memory so that (dynamic) variables land on
different memory pages from constants or the rest of your code (which is really just
data to the Perl interpreter), so the copy-on-write effect (explained in a moment) will
hit almost at random.

If many modules are preloaded, you can trade off the memory that stays shared
against the time for an occasional fork of a new Apache child by tuning the
MaxRequestsPerChild Apache directive. Each time a child reaches this upper limit and
dies, it will release its unshared pages. The new child will have to be forked, but it
will share its fresh pages until it writes on them (when some variable gets modified).

The ideal is a point where processes usually restart before too much memory
becomes unshared. You should take some measurements, to see if it makes a real dif-
ference and to find the range of reasonable values. If you have success with this tun-
ing, bear in mind that the value of MaxRequestsPerChild will probably be specific to
your situation and may change with changing circumstances.

,ch10.23775 Page 349 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

350 | Chapter 10: Improving Performance with Shared Memory and Proper Forking

It is very important to understand that the goal is not necessarily to have the highest
MaxRequestsPerChild that you can. Having a child serve 300 requests on precompiled
code is already a huge overall speedup. If this value also provides a substantial mem-
ory saving, that benefit may outweigh using a higher MaxRequestsPerChild value.

A newly forked child inherits the Perl interpreter from its parent. If most of the Perl
code is preloaded at server startup, then most of this preloaded code is inherited
from the parent process too. Because of this, less RAM has to be written to create the
process, so it is ready to serve requests very quickly.

During the life of the child, its memory pages (which aren’t really its own to start
with—it uses the parent’s pages) gradually get dirty—variables that were originally
inherited and shared are updated or modified—and copy-on-write happens. This
reduces the number of shared memory pages, thus increasing the memory require-
ment. Killing the child and spawning a new one allows the new child to use the pris-
tine shared memory of the parent process.

The recommendation is that MaxRequestsPerChild should not be too large, or you
will lose some of the benefit of sharing memory. With memory sharing in place, you
can run many more servers than without it. In Chapter 11 we will devise a formula to
calculate the optimum value for the MaxClients directive when sharing is taking
place.

As we mentioned in Chapter 9, you can find the size of the shared memory by using
the ps(1) or top(1) utilities, or by using the GTop module:

use GTop ();
print "Shared memory of the current process: ",
 GTop->new->proc_mem($$)->share, "\n";

print "Total shared memory: ",
 GTop->new->mem->share, "\n";

Calculating Real Memory Usage
We have shown how to measure the size of the process’s shared memory, but we still
want to know what the real memory usage is. Obviously this cannot be calculated
simply by adding up the memory size of each process, because that wouldn’t account
for the shared memory.

On the other hand, we cannot just subtract the shared memory size from the total
size to get the real memory-usage numbers, because in reality each process has a dif-
ferent history of processed requests, which makes different memory pages dirty;
therefore, different processes have different memory pages shared with the parent
process.

,ch10.23775 Page 350 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Sharing Memory | 351

So how do we measure the real memory size used by all running web-server pro-
cesses? It is a difficult task—probably too difficult to make it worthwhile to find the
exact number—but we have found a way to get a fair approximation.

This is the calculation technique that we have devised:

1. Calculate all the unshared memory, by summing up the difference between
shared and system memory of each process. To calculate a difference for a single
process, use:

use GTop;
my $proc_mem = GTop->new->proc_mem($$);
my $diff = $proc_mem->size - $proc_mem->share;
print "Difference is $diff bytes\n";

2. Add the system memory use of the parent process, which already includes the
shared memory of all other processes.

Figure 10-1 helps to visualize this.

The Apache::VMonitor module uses this technique to display real memory usage. In
fact, it makes no separation between the parent and child processes. They are all
counted indifferently using the following code:

use GTop ();
my $gtop = GTop->new;
my ($parent_pid, @child_pids) = some_code();
add the parent proc memory size
my $total_real = $gtop->proc_mem($parent_pid)->size;
add the unshared memory sizes
for my $pid (@child_pids) {
 my $proc_mem = $gtop->proc_mem($pid);
 $total_real += $proc_mem->size - $proc_mem->share;
}

Figure 10-1. Child processes sharing memory with the parent process

Parent process

Process A Process B

USA USB

SA SB
SAB

USA: Process A’s memory segment unshared with parent process
USB: Process B’s memory segment unshared with parent process
SA: Parent process’ memory segment shared with Process A
SA: Parent process’ memory segment shared with Process B
SAB: Parent process’ memory segment shared with Processes A and B

,ch10.23775 Page 351 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

352 | Chapter 10: Improving Performance with Shared Memory and Proper Forking

Now $total_real contains approximately the amount of memory really used.

This method has been verified in the following way. We calculate the real memory
used using the technique described above. We then look at the system memory
report for the total memory usage. We then stop Apache and look at the total mem-
ory usage for a second time. We check that the system memory usage report indi-
cates that the total memory used by the whole system has gone down by about the
same number that we’ve calculated.

Note that some OSes do smart memory-page caching, so you may not see the mem-
ory usage decrease immediately when you stop the server, even though it is actually
happening. Also, if your system is swapping, it’s possible that your swap memory
was used by the server as well as the real memory. Therefore, to get the verification
right you should use a tool that reports real memory usage, cached memory, and
swap memory. For example, on Linux you can use the free command. Run this com-
mand before and after stopping the server, then compare the numbers reported in
the column called free.

Based on this logic we can devise a formula for calculating the maximum possible
number of child processes, taking into account the shared memory. From now on,
instead of adding the memory size of the parent process, we are going to add the
maximum shared size of the child processes, and the result will be approximately the
same. We do that approximation because the size of the parent process is usually
unknown during the calculation.

Therefore, the formula to calculate the maximum number of child processes with
minimum shared memory size of Min_Shared_RAM_per_Child MB that can run simul-
taneously on a machine that has a total RAM of Total_RAM MB available for the web
server, and knowing the maximum process size, is:

which can also be rewritten as:

since the denominator is really the maximum possible amount of a child process’s
unshared memory.

In Chapter 14 we will see how we can enforce the values used in calculation during
runtime.

Memory-Sharing Validation
How do you find out if the code you write is shared between processes or not? The
code should remain shared, except when it is on a memory page used by variables
that change. As you know, a variable becomes unshared when a process modifies its

MaxClients Total_RAM - Min_Shared_RAM_per_Child
Max_Process_Size - Min_Shared_RAM_per_Child
---=

MaxClients Total_RAM - Shared_RAM_per_Child
Max_UnShared_RAM_per_Child

--=

,ch10.23775 Page 352 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Sharing Memory | 353

value, and so does the memory page it resides on, because the memory is shared in
memory-page units.

Sometimes you have variables that use a lot of memory, and you consider their usage
read-only and expect them to be shared between processes. However, certain opera-
tions that seemingly don’t modify the variable values do modify things internally,
causing the memory to become unshared.

Imagine that you have a 10 MB in-memory database that resides in a single variable,
and you perform various operations on it and want to make sure that the variable is
still shared. For example, if you do some regular expression (regex)–matching pro-
cessing on this variable and you want to use the pos() function, will it make the vari-
able unshared or not? If you access the variable once as a numerical value and once
as a string value, will the variable become unshared?

The Apache::Peek module comes to the rescue.

Variable unsharing caused by regular expressions

Let’s write a module called Book::MyShared, shown in Example 10-1, which we will
preload at server startup so that all the variables of this module are initially shared by
all children.

This module declares the package Book::MyShared, loads the Apache::Peek module
and defines the lexically scoped $readonly variable. In most instances, the $readonly
variable will be very large (perhaps a huge hash data structure), but here we will use
a small variable to simplify this example.

The module also defines three subroutines: match(), which does simple character
matching; print_pos(), which prints the current position of the matching engine
inside the string that was last matched; and finally dump(), which calls the Apache::
Peek module’s Dump() function to dump a raw Perl representation of the $readonly
variable.

Now we write a script (Example 10-2) that prints the process ID (PID) and calls all
three functions. The goal is to check whether pos() makes the variable dirty and
therefore unshared.

Example 10-1. Book/MyShared.pm

package Book::MyShared;
use Apache::Peek;

my $readonly = "Chris";

sub match { $readonly =~ /\w/g; }
sub print_pos { print "pos: ",pos($readonly),"\n";}
sub dump { Dump($readonly); }
1;

,ch10.23775 Page 353 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

354 | Chapter 10: Improving Performance with Shared Memory and Proper Forking

Before you restart the server, in httpd.conf, set:

MaxClients 2

for easier tracking. You need at least two servers to compare the printouts of the test
program. Having more than two can make the comparison process harder.

Now open two browser windows and issue requests for this script in each window,
so that you get different PIDs reported in the two windows and so that each process
has processed a different number of requests for the share_test.pl script.

In the first window you will see something like this:

PID: 27040
pos: 1
SV = PVMG(0x853db20) at 0x8250e8c
 REFCNT = 3
 FLAGS = (PADBUSY,PADMY,SMG,POK,pPOK)
 IV = 0
 NV = 0
 PV = 0x8271af0 "Chris"\0
 CUR = 5
 LEN = 6
 MAGIC = 0x853dd80
 MG_VIRTUAL = &vtbl_mglob
 MG_TYPE = 'g'
 MG_LEN = 1

And in the second window:

PID: 27041
pos: 2
SV = PVMG(0x853db20) at 0x8250e8c
 REFCNT = 3
 FLAGS = (PADBUSY,PADMY,SMG,POK,pPOK)
 IV = 0
 NV = 0
 PV = 0x8271af0 "Chris"\0
 CUR = 5
 LEN = 6
 MAGIC = 0x853dd80
 MG_VIRTUAL = &vtbl_mglob
 MG_TYPE = 'g'
 MG_LEN = 2

All the addresses of the supposedly large data structure are the same (0x8250e8c and
0x8271af0)—therefore, the variable data structure is almost completely shared. The

Example 10-2. share_test.pl

use Book::MyShared;
print "Content-type: text/plain\n\n";
print "PID: $$\n";
Book::MyShared::match();
Book::MyShared::print_pos();
Book::MyShared::dump();

,ch10.23775 Page 354 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Sharing Memory | 355

only difference is in the SV.MAGIC.MG_LEN record, which is not shared. This record is
used to track where the last m//g match left off for the given variable, (e.g., by pos())
and therefore it cannot be shared. See the perlre manpage for more information.

Given that the $readonly variable is a big one, its value is still shared between the
processes, while part of the variable data structure is nonshared. The nonshared part
is almost insignificant because it takes up very little memory space.

If you need to compare more than one variable, doing it by hand can be quite time
consuming and error prone. Therefore, it’s better to change the test script to dump
the Perl datatypes into files (e.g., /tmp/dump.$$, where $$ is the PID of the process).
Then you can use the diff(1) utility to see whether there is some difference.

Changing the dump() function to write the information to a file will do the job.
Notice that we use Devel::Peek and not Apache::Peek, so we can easily reroute the
STDERR stream into a file. In our example, when Devel::Peek tries to print to STDERR, it
actually prints to our file. When we are done, we make sure to restore the original
STDERR file handle.

The resulting code is shown in Example 10-3.

Now we modify our script to use the modified module, as shown in Example 10-4.

Example 10-3. Book/MyShared2.pm

package Book::MyShared2;
use Devel::Peek;

my $readonly = "Chris";

sub match { $readonly =~ /\w/g; }
sub print_pos { print "pos: ",pos($readonly),"\n";}
sub dump {
 my $dump_file = "/tmp/dump.$$";
 print "Dumping the data into $dump_file\n";
 open OLDERR, ">&STDERR";
 open STDERR, ">$dump_file" or die "Can't open $dump_file: $!";
 Dump($readonly);
 close STDERR ;
 open STDERR, ">&OLDERR";
}
1;

Example 10-4. share_test2.pl

use Book::MyShared2;
print "Content-type: text/plain\n\n";
print "PID: $$\n";
Book::MyShared2::match();
Book::MyShared2::print_pos();
Book::MyShared2::dump();

,ch10.23775 Page 355 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

356 | Chapter 10: Improving Performance with Shared Memory and Proper Forking

Now we can run the script as before (with MaxClients 2). Two dump files will be
created in the directory /tmp. In our test these were created as /tmp/dump.1224 and
/tmp/dump.1225. When we run diff(1):

panic% diff -u /tmp/dump.1224 /tmp/dump.1225
12c12
- MG_LEN = 1
+ MG_LEN = 2

we see that the two padlists (of the variable $readonly) are different, as we observed
before, when we did a manual comparison.

If we think about these results again, we come to the conclusion that there is no need
for two processes to find out whether the variable gets modified (and therefore
unshared). It’s enough just to check the data structure twice, before the script was
executed and again afterward. We can modify the Book::MyShared2 module to dump
the padlists into a different file after each invocation and then to run diff(1) on the
two files.

Suppose you have some lexically scoped variables (i.e., variables declared with my())
in an Apache::Registry script. If you want to watch whether they get changed
between invocations inside one particular process, you can use the Apache::
RegistryLexInfo module. It does exactly that: it takes a snapshot of the padlist before
and after the code execution and shows the difference between the two. This particu-
lar module was written to work with Apache::Registry scripts, so it won’t work for
loaded modules. Use the technique we described above for any type of variables in
modules and scripts.

Another way of ensuring that a scalar is read-only and therefore shareable is to use
either the constant pragma or the readonly pragma, as shown in Example 10-5. But
then you won’t be able to make calls that alter the variable even a little, such as in
the example that we just showed, because it will be a true constant variable and you
will get a compile-time error if you try this.

However, the code shown in Example 10-6 is OK.

Example 10-5. Book/Constant.pm

package Book::Constant;
use constant readonly => "Chris";

sub match { readonly =~ /\w/g; }
sub print_pos { print "pos: ",pos(readonly),"\n";}
1;

panic% perl -c Book/Constant.pm

Can't modify constant item in match position at Book/Constant.pm
line 5, near "readonly)"
Book/Constant.pm had compilation errors.

,ch10.23775 Page 356 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Sharing Memory | 357

It doesn’t modify the variable flags at all.

Numerical versus string access to variables

Data can get unshared on read as well—for example, when a numerical variable is
accessed as a string. Example 10-7 shows some code that proves this.

Example 10-6. Book/Constant1.pm

package Book::Constant1;
use constant readonly => "Chris";

sub match { readonly =~ /\w/g; }
1;

Example 10-7. numerical_vs_string.pl

#!/usr/bin/perl -w

use Devel::Peek;
my $numerical = 10;
my $string = "10";
$|=1;

dump_numerical();
read_numerical_as_numerical();
dump_numerical();
read_numerical_as_string();
dump_numerical();

dump_string();
read_string_as_numerical();
dump_string();
read_string_as_string();
dump_string();

sub read_numerical_as_numerical {
 print "\nReading numerical as numerical: ", int($numerical), "\n";
}
sub read_numerical_as_string {
 print "\nReading numerical as string: ", "$numerical", "\n";
}
sub read_string_as_numerical {
 print "\nReading string as numerical: ", int($string), "\n";
}
sub read_string_as_string {
 print "\nReading string as string: ", "$string", "\n";
}
sub dump_numerical {
 print "\nDumping a numerical variable\n";
 Dump($numerical);
}
sub dump_string {
 print "\nDumping a string variable\n";

,ch10.23775 Page 357 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

358 | Chapter 10: Improving Performance with Shared Memory and Proper Forking

The test script defines two lexical variables: a number and a string. Perl doesn’t have
strong data types like C does; Perl’s scalar variables can be accessed as strings and
numbers, and Perl will try to return the equivalent numerical value of the string if it
is accessed as a number, and vice versa. The initial internal representation is based
on the initially assigned value: a numerical value* in the case of $numerical and a
string value† in the case of $string.

The script accesses $numerical as a number and then as a string. The internal repre-
sentation is printed before and after each access. The same test is performed with a
variable that was initially defined as a string ($string).

When we run the script, we get the following output:

Dumping a numerical variable
SV = IV(0x80e74c0) at 0x80e482c
 REFCNT = 4
 FLAGS = (PADBUSY,PADMY,IOK,pIOK)
 IV = 10

Reading numerical as numerical: 10

Dumping a numerical variable
SV = PVNV(0x810f960) at 0x80e482c
 REFCNT = 4
 FLAGS = (PADBUSY,PADMY,IOK,NOK,pIOK,pNOK)
 IV = 10
 NV = 10
 PV = 0

Reading numerical as string: 10

Dumping a numerical variable
SV = PVNV(0x810f960) at 0x80e482c
 REFCNT = 4
 FLAGS = (PADBUSY,PADMY,IOK,NOK,POK,pIOK,pNOK,pPOK)
 IV = 10
 NV = 10
 PV = 0x80e78b0 "10"\0
 CUR = 2
 LEN = 28

Dumping a string variable
SV = PV(0x80cb87c) at 0x80e8190

 Dump($string);
}

* IV, for signed integer value, or a few other possible types for floating-point and unsigned integer
representations.

† PV, for pointer value (SV is already taken by a scalar data type)

Example 10-7. numerical_vs_string.pl (continued)

,ch10.23775 Page 358 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Sharing Memory | 359

 REFCNT = 4
 FLAGS = (PADBUSY,PADMY,POK,pPOK)
 PV = 0x810f518 "10"\0
 CUR = 2
 LEN = 3

Reading string as numerical: 10

Dumping a string variable
SV = PVNV(0x80e78d0) at 0x80e8190
 REFCNT = 4
 FLAGS = (PADBUSY,PADMY,NOK,POK,pNOK,pPOK)
 IV = 0
 NV = 10
 PV = 0x810f518 "10"\0
 CUR = 2
 LEN = 3

Reading string as string: 10

Dumping a string variable
SV = PVNV(0x80e78d0) at 0x80e8190
 REFCNT = 4
 FLAGS = (PADBUSY,PADMY,NOK,POK,pNOK,pPOK)
 IV = 0
 NV = 10
 PV = 0x810f518 "10"\0
 CUR = 2
 LEN = 3

We know that Perl does the conversion from one type to another on the fly, and
that’s where the variables get modified—during the automatic conversion behind the
scenes. From this simple test you can see that variables may change internally when
accessed in different contexts. Notice that even when a numerical variable is accessed
as a number for the first time, its internals change, as Perl has intialized its PV and NV
fields (the string and floating-point represenations) and adjusted the FLAGS fields.

From this example you can clearly see that if you want your variables to stay shared
and there is a chance that the same variable will be accessed both as a string and as a
numerical value, you have to access this variable as a numerical and as a string, as in
the above example, before the fork happens (e.g., in the startup file). This ensures
that the variable will be shared if no one modifies its value. Of course, if some other
variable in the same page happens to change its value, the page will become
unshared anyway.

Preloading Perl Modules at Server Startup
As we just explained, to get the code-sharing effect, you should preload the code
before the child processes get spawned. The right place to preload modules is at
server startup.

,ch10.23775 Page 359 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

360 | Chapter 10: Improving Performance with Shared Memory and Proper Forking

You can use the PerlRequire and PerlModule directives to load commonly used mod-
ules such as CGI.pm and DBI when the server is started. On most systems, server chil-
dren will be able to share the code space used by these modules. Just add the
following directives into httpd.conf:

PerlModule CGI
PerlModule DBI

An even better approach is as follows. First, create a separate startup file. In this file
you code in plain Perl, loading modules like this:

use DBI ();
use Carp ();
1;

(When a module is loaded, it may export symbols to your package namespace by
default. The empty parentheses () after a module’s name prevent this. Don’t forget
this, unless you need some of these in the startup file, which is unlikely. It will save
you a few more kilobytes of memory.)

Next, require() this startup file in httpd.conf with the PerlRequire directive, placing
the directive before all the other mod_perl configuration directives:

PerlRequire /path/to/startup.pl

As usual, we provide some numbers to prove the theory. Let’s conduct a memory-
usage test to prove that preloading reduces memory requirements.

To simplify the measurement, we will use only one child process. We will use these
settings in httpd.conf:

MinSpareServers 1
MaxSpareServers 1
StartServers 1
MaxClients 1
MaxRequestsPerChild 100

We are going to use memuse.pl (shown in Example 10-8), an Apache::Registry script
that consists of two parts: the first one loads a bunch of modules (most of which
aren’t going to be used); the second reports the memory size and the shared memory
size used by the single child process that we start, and the difference between the
two, which is the amount of unshared memory.

Example 10-8. memuse.pl

use strict;
use CGI ();
use DB_File ();
use LWP::UserAgent ();
use Storable ();
use DBI ();
use GTop ();

,ch10.23775 Page 360 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Sharing Memory | 361

First we restart the server and execute this CGI script with none of the above mod-
ules preloaded. Here is the result:

Size Shared Unshared
4706304 2134016 2572288 (bytes)

Now we take the following code:

use strict;
use CGI ();
use DB_File ();
use LWP::UserAgent ();
use Storable ();
use DBI ();
use GTop ();
1;

and copy it into the startup.pl file. The script remains unchanged. We restart the
server (now the modules are preloaded) and execute it again. We get the following
results:

Size Shared Unshared
4710400 3997696 712704 (bytes)

Let’s put the two results into one table:

Preloading Size Shared Unshared

Yes 4710400 3997696 712704 (bytes)
No 4706304 2134016 2572288 (bytes)

Difference 4096 1863680 -1859584

You can clearly see that when the modules weren’t preloaded, the amount of shared
memory was about 1,864 KB smaller than in the case where the modules were
preloaded.

Assuming that you have 256 MB dedicated to the web server, if you didn’t preload
the modules, you could have 103 servers:

268435456 = X * 2572288 + 2134016

X = (268435456 - 2134016) / 2572288 = 103

(Here we have used the formula that we devised earlier in this chapter.)

my $r = shift;
$r->send_http_header('text/plain');
my $proc_mem = GTop->new->proc_mem($$);
my $size = $proc_mem->size;
my $share = $proc_mem->share;
my $diff = $size - $share;
printf "%10s %10s %10s\n", qw(Size Shared Unshared);
printf "%10d %10d %10d (bytes)\n", $size, $share, $diff;

Example 10-8. memuse.pl (continued)

,ch10.23775 Page 361 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

362 | Chapter 10: Improving Performance with Shared Memory and Proper Forking

Now let’s calculate the same thing with the modules preloaded:

268435456 = X * 712704 + 3997696

X = (268435456 - 3997696) / 712704 = 371

You can have almost four times as many servers!!!

Remember, however, that memory pages get dirty, and the amount of shared mem-
ory gets smaller with time. We have presented the ideal case, where the shared mem-
ory stays intact. Therefore, in use, the real numbers will be a little bit different.

Since you will use different modules and different code, obviously in your case it’s
possible that the process sizes will be bigger and the shared memory smaller, and
vice versa. You probably won’t get the same ratio we did, but the example certainly
shows the possibilities.

Preloading Registry Scripts at Server Startup
Suppose you find yourself stuck with self-contained Perl CGI scripts (i.e., all the code
placed in the CGI script itself). You would like to preload modules to benefit from
sharing the code between the children, but you can’t or don’t want to move most of
the stuff into modules. What can you do?

Luckily, you can preload scripts as well. This time the Apache::RegistryLoader mod-
ule comes to your aid. Apache::RegistryLoader compiles Apache::Registry scripts at
server startup.

For example, to preload the script /perl/test.pl, which is in fact the file /home/httpd/
perl/test.pl, you would do the following:

use Apache::RegistryLoader ();
Apache::RegistryLoader->new->handler("/perl/test.pl",
 "/home/httpd/perl/test.pl");

You should put this code either in <Perl> sections or in a startup script.

But what if you have a bunch of scripts located under the same directory and you
don’t want to list them one by one? Then the File::Find module will do most of the
work for you.

The script shown in Example 10-9 walks the directory tree under which all Apache::
Registry scripts are located. For each file with the extension .pl, it calls the Apache::
RegistryLoader::handler() method to preload the script in the parent server. This
happens before Apache pre-forks the child processes.

Example 10-9. startup_preload.pl

use File::Find qw(finddepth);
use Apache::RegistryLoader ();
{
 my $scripts_root_dir = "/home/httpd/perl/";

,ch10.23775 Page 362 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Sharing Memory | 363

Note that we didn’t use the second argument to handler() here, as we did in the first
example. To make the loader smarter about the URI-to-filename translation, you
might need to provide a trans() function to translate the URI to a filename. URI-to-
filename translation normally doesn’t happen until an HTTP request is received, so
the module is forced to do its own translation. If the filename is omitted and a trans()
function is not defined, the loader will try to use the URI relative to the ServerRoot.

A simple trans() function can be something like this:

sub mytrans {
 my $uri = shift;
 $uri =~ s|^/perl/|/home/httpd/perl/|;
 return $uri;
}

You can easily derive the right translation by looking at the Alias directive. The
above mytrans() function matches our Alias:

Alias /perl/ /home/httpd/perl/

After defining the URI-to-filename translation function, you should pass it during the
creation of the Apache::RegistryLoader object:

my $rl = Apache::RegistryLoader->new(trans => \&mytrans);

We won’t show any benchmarks here, since the effect is just like preloading mod-
ules. However, we will use this technique later in this chapter, when we will need to
have a fair comparison between PerlHandler code and Apache::Registry scripts. This
will require both the code and the scripts to be preloaded at server startup.

Module Initialization at Server Startup
It’s important to preload modules and scripts at server startup. But for some mod-
ules this isn’t enough, and you have to prerun their initialization code to get more

 my $rl = Apache::RegistryLoader->new;
 finddepth(
 sub {
 return unless /\.pl$/;
 my $url = $File::Find::name;
 $url =~ s|$scripts_root_dir/?|/|;
 warn "pre-loading $url\n";
 # preload $url
 my $status = $rl->handler($url);
 unless($status = = 200) {
 warn "pre-load of '$url' failed, status=$status\n";
 }
 },
 $scripts_root_dir
);
}

Example 10-9. startup_preload.pl (continued)

,ch10.23775 Page 363 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

364 | Chapter 10: Improving Performance with Shared Memory and Proper Forking

memory pages shared. Usually you will find information about specific modules in
their respective manpages. We will present a few examples of widely used modules
where the code needs to be initialized.

Initializing DBI.pm

The first example is the DBI module. DBI works with many database drivers from the
DBD:: category (e.g., DBD::mysql). If you want to minimize memory use after Apache
forks its children, it’s not enough to preload DBI—you must initialize DBI with the
driver(s) that you are going to use (usually a single driver is used). Note that you
should do this only under mod_perl and other environments where sharing memory
is very important. Otherwise, you shouldn’t initialize drivers.

You probably already know that under mod_perl you should use the Apache::DBI
module to get persistent database connections (unless you open a separate connec-
tion for each user). Apache::DBI automatically loads DBI and overrides some of its
methods. You should continue coding as if you had loaded only the DBI module.

As with preloading modules, our goal is to find the configuration that will give the
smallest difference between the shared and normal memory reported, and hence the
smallest total memory usage.

To simplify the measurements, we will again use only one child process. We will use
these settings in httpd.conf:

MinSpareServers 1
MaxSpareServers 1
StartServers 1
MaxClients 1
MaxRequestsPerChild 100

We always preload these modules:

use Gtop();
use Apache::DBI(); # preloads DBI as well

We are going to run memory benchmarks on five different versions of the startup.pl
file:

Version 1
Leave the file unmodified.

Version 2
Install the MySQL driver (we will use the MySQL RDBMS for our test):

DBI->install_driver("mysql");

It’s safe to use this method—as with use(), if it can’t be installed, it will die().

Version 3
Preload the MySQL driver module:

use DBD::mysql;

,ch10.23775 Page 364 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Sharing Memory | 365

Version 4
Tell Apache::DBI to connect to the database when the child process starts
(ChildInitHandler). No driver is preloaded before the child is spawned!

Apache::DBI->connect_on_init('DBI:mysql:test::localhost', "", "",
 {
 PrintError => 1, # warn() on errors
 RaiseError => 0, # don't die on error
 AutoCommit => 1, # commit executes
 # immediately
 }
) or die "Cannot connect to database: $DBI::errstr";

Version 5
Use both connect_on_init() from version 4 and install_driver() from version 2.

The Apache::Registry test script that we have used is shown in Example 10-10.

The script opens a connection to the database test and issues a query to learn what
tables the database has. Ordinarily, when the data is collected and printed the

Example 10-10. preload_dbi.pl

use strict;
use GTop ();
use DBI ();

my $dbh = DBI->connect("DBI:mysql:test::localhost", "", "",
 {
 PrintError => 1, # warn() on errors
 RaiseError => 0, # don't die on error
 AutoCommit => 1, # commit executes immediately
 }
) or die "Cannot connect to database: $DBI::errstr";

my $r = shift;
$r->send_http_header('text/plain');

my $do_sql = "SHOW TABLES";
my $sth = $dbh->prepare($do_sql);
$sth->execute();
my @data = ();
while (my @row = $sth->fetchrow_array) {
 push @data, @row;
}
print "Data: @data\n";
$dbh->disconnect(); # NOOP under Apache::DBI

my $proc_mem = GTop->new->proc_mem($$);
my $size = $proc_mem->size;
my $share = $proc_mem->share;
my $diff = $size - $share;
printf "%8s %8s %8s\n", qw(Size Shared Unshared);
printf "%8d %8d %8d (bytes)\n", $size, $share, $diff;

,ch10.23775 Page 365 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

366 | Chapter 10: Improving Performance with Shared Memory and Proper Forking

connection would be closed, but Apache::DBI overrides thsi with an empty method.
After processing the data, the memory usage is printed. You will already be familiar
with that part of the code.

Here are the results of the five tests. The server was restarted before each new test.
We have sorted the results by the Unshared column.

1. After the first request:
Test type Size Shared Unshared
--
(2) install_driver 3465216 2621440 843776
(5) install_driver & connect_on_init 3461120 2609152 851968
(3) preload driver 3465216 2605056 860160
(1) nothing added 3461120 2494464 966656
(4) connect_on_init 3461120 2482176 978944

2. After the second request (all the subsequent requests showed the same results):
Test type Size Shared Unshared
--
(2) install_driver 3469312 2609152 860160
(5) install_driver & connect_on_init 3481600 2605056 876544
(3) preload driver 3469312 2588672 880640
(1) nothing added 3477504 2482176 995328
(4) connect_on_init 3481600 2469888 1011712

What do we conclude from analyzing this data? First we see that only after a second
reload do we get the final memory footprint for the specific request in question (if
you pass different arguments, the memory usage will be different).

But both tables show the same pattern of memory usage. We can clearly see that the
real winner is version 2, where the MySQL driver was installed. Since we want to have
a connection ready for the first request made to the freshly spawned child process, we
generally use version 5. This uses somewhat more memory but has almost the same
number of shared memory pages. Version 3 preloads only the driver, which results in
less shared memory. Having nothing initialized (version 1) and using only the
connect_on_init() method (version 4) gave the least shared memory. The former is a
little bit better than the latter, but both are significantly worse than the first two.

Notice that the smaller the value of the Unshared column, the more processes you
can have using the same amount of RAM. If we compare versions 2 and 4 of the
script, assuming for example that we have 256 MB of memory dedicated to mod_
perl processes, we get the following numbers.

Version 2:

Version 4:

N 268435456 2609152–
860160

--- 309= =

N 268435456 2469888–
1011712

--- 262= =

,ch10.23775 Page 366 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Sharing Memory | 367

As you can see, there are 17% more child processes with version 2.

Initializing CGI.pm

CGI.pm is a big module that by default postpones the compilation of its methods until
they are actually needed, thus making it possible to use it under a slow mod_cgi han-
dler without adding a big startup overhead. That’s not what we want under mod_
perl—if you use CGI.pm, in addition to preloading the module at server startup, you
should precompile the methods that you are going to use. To do that, simply call the
compile() method:

use CGI;
CGI->compile(':all');

You should replace the tag group :all with the real tags and group tags that you are
going to use if you want to optimize memory usage.

We are going to compare the shared-memory footprint using a script that is back-
ward compatible with mod_cgi. You can improve the performance of this kind of
script as well, but if you really want fast code, think about porting it to use Apache::
Request* for the CGI interface and some other module for your HTML generation.

The Apache::Registry script that we are going to use to make the comparison is
shown in Example 10-11.

The script initializes the CGI object, sends the HTTP header, and then prints any
arguments and values that were passed to it. At the end, as usual, we print the mem-
ory usage.

* Apache::Request is significantly faster than CGI.pm because its methods for processing a request’s arguments
are written in C.

Example 10-11. preload_cgi_pm.pl

use strict;
use CGI ();
use GTop ();

my $q = new CGI;
print $q->header('text/plain');
print join "\n", map {"$_ => ".$q->param($_) } $q->param;
print "\n";

my $proc_mem = GTop->new->proc_mem($$);
my $size = $proc_mem->size;
my $share = $proc_mem->share;
my $diff = $size - $share;
printf "%8s %8s %8s\n", qw(Size Shared Unshared);
printf "%8d %8d %8d (bytes)\n", $size, $share, $diff;

,ch10.23775 Page 367 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

368 | Chapter 10: Improving Performance with Shared Memory and Proper Forking

Again, we are going to use a single child process. Here is part of our httpd.conf file:

MinSpareServers 1
MaxSpareServers 1
StartServers 1
MaxClients 1
MaxRequestsPerChild 100

We always preload the Gtop module:

use Gtop ();

We are going to run memory benchmarks on three different versions of the startup.pl
file:

Version 1
Leave the file unmodified.

Version 2
Preload CGI.pm:

use CGI ();

Version 3
Preload CGI.pm and precompile the methods that we are going to use in the
script:

use CGI ();
CGI->compile(qw(header param));

Here are the results of the three tests, sorted by the Unshared column. The server was
restarted before each new test.

1. After the first request:
 Test type Size Shared Unshared
 --
 (3) preloaded & methods+compiled 3244032 2465792 778240
 (2) preloaded 3321856 2326528 995328
 (1) not preloaded 3321856 2146304 1175552

2. After the second request (the subsequent request showed the same results):
 Test type Size Shared Unshared

 (3) preloaded & methods+compiled 3248128 2445312 802816
 (2) preloaded 3325952 2314240 1011712
 (1) not preloaded 3325952 2134016 1191936

Since the memory usage stabilized after the second request, we are going to look at
the second table. By comparing the first (not preloaded) and the second (preloaded)
versions, we can see that preloading adds about 180 KB (2314240 – 2134016 bytes)
of shared memory size, which is the result we expect from most modules. However,
by comparing the second (preloaded) and the third (preloaded and precompiled
methods) options, we can see that by precompiling methods, we gain 207 KB
(1011712 – 802816 bytes) more of shared memory. And we have used only a few
methods (the header method loads a few more methods transparently for the user).

,ch10.23775 Page 368 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Sharing Memory | 369

The gain grows as more of the used methods are precompiled. If you use CGI.pm’s
functional interface, all of the above applies as well.

Even in our very simple case using the same formula, what do we see? Let’s again
assume that we have 256 MB dedicated for mod_perl.

Version 1:

Version 3:

If we preload CGI.pm and precompile a few methods that we use in the test script, we
can have 50% more child processes than when we don’t preload and precompile the
methods that we are going to use.

Note that CGI.pm Versions 3.x are supposed to be much less bloated, but make sure
to test your code as we just demonstrated.

Memory Preallocation
Perl reuses allocated memory whenever possible. With Devel::Peek we can actually
see this happening by peeking at the variable data structure. Consider the simple
code in Example 10-12.

The code starts by loading the Devel::Peek module and calling the function foo()
twice in the for loop.

The foo() function declares a lexically scoped variable, $sv (scalar value). Then it
dumps the $sv data structure and prints a separator, assigns a string of 100,000 x
characters to $sv, assigns it to an empty string, and prints the $sv data structure
again. At the end, a separator of two empty lines is printed.

Example 10-12. realloc.pl

use Devel::Peek;

foo() for 1..2;

sub foo {
 my $sv;
 Dump $sv;
 print "----\n";
 $sv = 'x' x 100_000;
 $sv = "";
 Dump $sv;
 print "\n\n";
}

N 268435456 2134016–
1191936

--- 223= =

N 268435456 2445312–
802816

--- 331= =

,ch10.23775 Page 369 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

370 | Chapter 10: Improving Performance with Shared Memory and Proper Forking

Let’s observe the output generated by this code:

SV = NULL(0x0) at 0x80787c0
 REFCNT = 1
 FLAGS = (PADBUSY,PADMY)

SV = PV(0x804c6c8) at 0x80787c0
 REFCNT = 1
 FLAGS = (PADBUSY,PADMY,POK,pPOK)
 PV = 0x8099d98 ""\0
 CUR = 0
 LEN = 100001

SV = PV(0x804c6c8) at 0x80787c0
 REFCNT = 1
 FLAGS = (PADBUSY,PADMY)
 PV = 0x8099d98 ""\0
 CUR = 0
 LEN = 100001

SV = PV(0x804c6c8) at 0x80787c0
 REFCNT = 1
 FLAGS = (PADBUSY,PADMY,POK,pPOK)
 PV = 0x8099d98 ""\0
 CUR = 0
 LEN = 100001

In this output, we are interested in the values of PV—the memory address of the
string value, and LEN—the length of the allocated memory.

When foo() is called for the first time and the $sv data structure is dumped for the
first time, we can see that no data has yet been assigned to it. The second time the
$sv data structure is dumped, we can see that while $sv contains an empty string, its
data structure still kept all the memory allocated for the long string.

Notice that $sv is declared with my(), so at the end of the function foo() it goes out
of scope (i.e., it is destroyed). To our surprise, when we observe the output from the
second call to foo(), we discover that when $sv is declared at the beginning of foo(),
it reuses the data structure from the previously destroyed $sv variable—the PV field
contains the same memory address and the LEN field is still 100,101 characters long.

If we had asked for a longer memory chunk during the second invocation, Perl would
have called realloc() and a new chunk of memory would have been allocated.

Therefore, if you have some kind of buffering variable that will grow over the pro-
cesses life, you may want to preallocate the memory for this variable. For example, if
you know a variable $Book::Buffer::buffer may grow to the size of 100,000 charac-
ters, you can preallocate the memory in the following way:

package Book::Buffer;

my $buffer;
sub prealloc { $buffer = ' ' x 100_000; $buffer = ""; 0;}

,ch10.23775 Page 370 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Forking and Executing Subprocesses from mod_perl | 371

...
1;

You should load this module during the PerlChildInitHandler. In startup.pl, insert:

use Book::Buffer;
Apache->push_handlers(PerlChildInitHandler => \&Book::Buffer::prealloc);

so each child will allocate its own memory for the variable. When $Book::Buffer::
buffer starts growing at runtime, no time will be wasted on memory reallocation as
long as the preallocated memory is sufficient.

Forking and Executing Subprocesses
from mod_perl
When you fork Apache, you are forking the entire Apache server, lock, stock and
barrel. Not only are you duplicating your Perl code and the Perl interpreter, but you
are also duplicating all the core routines and whatever modules you have used in
your server—for example, mod_ssl, mod_rewrite, mod_log, mod_proxy, and mod_
speling (no, that’s not a typo!). This can be a large overhead on some systems, so
wherever possible, it’s desirable to avoid forking under mod_perl.

Modern operating systems have a light version of fork(), optimized to do the abso-
lute minimum of memory-page duplication, which adds little overhead when called.
This fork relies on the copy-on-write technique. The gist of this technique is as fol-
lows: the parent process’s memory pages aren’t all copied immediately to the child’s
space on fork()ing; this is done later, when the child or the parent modifies the data
in the shared memory pages.

If you need to call a Perl program from your mod_perl code, it’s better to try to con-
vert the program into a module and call it as a function without spawning a special
process to do that. Of course, if you cannot do that or the program is not written in
Perl, you have to call the program via system() or an equivalent function, which
spawns a new process. If the program is written in C, you can try to write some Perl
glue code with help of the Inline, XS, or SWIG architectures. Then the program will
be executed as a Perl subroutine and avoid a fork() call.

Also by trying to spawn a subprocess, you might be trying to do the wrong thing. If
you just want to do some post-processing after sending a response to the browser,
look into the PerlCleanupHandler directive. This allows you to do exactly that. If you
just need to run some cleanup code, you may want to register this code during the
request processing via:

my $r = shift;
$r->register_cleanup(\&do_cleanup);
sub do_cleanup{ #some clean-up code here }

,ch10.23775 Page 371 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

372 | Chapter 10: Improving Performance with Shared Memory and Proper Forking

But when a lengthy job needs to be done, there is not much choice but to use fork().
You cannot just run such a job within an Apache process, since firstly it will keep the
Apache process busy instead of letting it do the job it was designed for, and sec-
ondly, unless it is coded so as to detach from the Apache processes group, if Apache
should happen to be stopped the lengthy job might be terminated as well.

In the following sections, we’ll discuss how to properly spawn new processes under
mod_perl.

Forking a New Process
The typical way to call fork() under mod_perl is illustrated in Example 10-13.

When using fork(), you should check its return value, since a return of undef it
means that the call was unsuccessful and no process was spawned. This can happen
for example, when the system is already running too many processes and cannot
spawn new ones.

When the process is successfully forked, the parent receives the PID of the newly
spawned child as a returned value of the fork() call and the child receives 0. Now
the program splits into two. In the above example, the code inside the first block
after if will be executed by the parent, and the code inside the first block after else
will be executed by the child.

It’s important not to forget to explicitly call exit() at the end of the child code when
forking. If you don’t and there is some code outside the if...else block, the child
process will execute it as well. But under mod_perl there is another nuance—you
must use CORE::exit() and not exit(), which would be automatically overriden by
Apache::exit() if used in conjunction with Apache::Registry and similar modules.
You want the spawned process to quit when its work is done, or it’ll just stay alive,
using resources and doing nothing.

The parent process usually completes its execution and returns to the pool of free
servers to wait for a new assignment. If the execution is to be aborted earlier for

Example 10-13. fork1.pl

defined (my $kid = fork) or die "Cannot fork: $!\n";
if ($kid) {
 # Parent runs this block
}
else {
 # Child runs this block
 # some code comes here
 CORE::exit(0);
}
possibly more code here usually run by the parent

,ch10.23775 Page 372 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Forking and Executing Subprocesses from mod_perl | 373

some reason, you should use Apache::exit() or die(). In the case of Apache::
Registry or Apache::PerlRun handlers, a simple exit() will do the right thing.

Freeing the Parent Process
In the child code, you must also close all the pipes to the connection socket that were
opened by the parent process (i.e., STDIN and STDOUT) and inherited by the child, so
the parent will be able to complete the request and free itself for serving other
requests. If you need the STDIN and/or STDOUT streams, you should reopen them. You
may need to close or reopen the STDERR file handle, too. As inherited from its parent,
it’s opened to append to the error_log file, so the chances are that you will want to
leave it untouched.

Under mod_perl, the spawned process also inherits the file descriptor that’s tied to
the socket through which all the communications between the server and the client
pass. Therefore, you need to free this stream in the forked process. If you don’t, the
server can’t be restarted while the spawned process is still running. If you attempt to
restart the server, you will get the following error:

[Mon May 20 23:04:11 2002] [crit]
(98)Address already in use: make_sock:
 could not bind to address 127.0.0.1 port 8000

Apache::SubProcess comes to help, providing a method called cleanup_for_exec()
that takes care of closing this file descriptor.

The simplest way to free the parent process is to close the STDIN, STDOUT, and STDERR
streams (if you don’t need them) and untie the Apache socket. If the mounted parti-
tion is to be unmounted at a later time, in addition you may want to change the cur-
rent directory of the forked process to / so that the forked process won’t keep the
mounted partition busy.

To summarize all these issues, here is an example of a fork that takes care of freeing
the parent process (Example 10-14).

Example 10-14. fork2.pl

use Apache::SubProcess;
defined (my $kid = fork) or die "Cannot fork: $!\n";
if ($kid) {
 # Parent runs this block
}
else {
 # Child runs this block
 $r->cleanup_for_exec(); # untie the socket
 chdir '/' or die "Can't chdir to /: $!";
 close STDIN;
 close STDOUT;
 close STDERR;

,ch10.23775 Page 373 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

374 | Chapter 10: Improving Performance with Shared Memory and Proper Forking

Of course, the real code should be placed between freeing the parent code and the
child process termination.

Detaching the Forked Process
Now what happens if the forked process is running and we decide that we need to
restart the web server? This forked process will be aborted, because when the parent
process dies during the restart, it will kill its child processes as well. In order to avoid
this, we need to detach the process from its parent session by opening a new session
with help of a setsid() system call (provided by the POSIX module). This is demon-
strated in Example 10-15.

Now the spawned child process has a life of its own, and it doesn’t depend on the
parent any more.

Avoiding Zombie Processes
Normally, every process has a parent. Many processes are children of the init pro-
cess, whose PID is 1. When you fork a process, you must wait() or waitpid() for it
to finish. If you don’t wait() for it, it becomes a zombie.

A zombie is a process that doesn’t have a parent. When the child quits, it reports the
termination to its parent. If no parent wait()s to collect the exit status of the child, it
gets confused and becomes a ghost process that can be seen as a process but not
killed. It will be killed only when you stop the parent process that spawned it.

 # some code goes here

 CORE::exit(0);
}
possibly more code here usually run by the parent

Example 10-15. fork3.pl

use POSIX 'setsid';

defined (my $kid = fork) or die "Cannot fork: $!\n";
if ($kid) {
 # Parent runs this block
}
else {
 # Child runs this block
 setsid or die "Can't start a new session: $!";
 # ...
}

Example 10-14. fork2.pl (continued)

,ch10.23775 Page 374 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Forking and Executing Subprocesses from mod_perl | 375

Generally, the ps(1) utility displays these processes with the <defunc> tag, and you
may see the zombies counter increment when using top(). These zombie processes
can take up system resources and are generally undesirable.

The proper way to do a fork, to avoid zombie processes, is shown in Example 10-16.

In most cases, the only reason you would want to fork is when you need to spawn a
process that will take a long time to complete. So if the Apache process that spawns
this new child process has to wait for it to finish, you have gained nothing. You can
neither wait for its completion (because you don’t have the time to) nor continue,
because if you do you will get yet another zombie process. This is called a blocking call,
since the process is blocked from doing anything else until this call gets completed.

The simplest solution is to ignore your dead children. Just add this line before the
fork() call:

$SIG{CHLD} = 'IGNORE';

When you set the CHLD (SIGCHLD in C) signal handler to 'IGNORE', all the processes
will be collected by the init process and therefore will be prevented from becoming
zombies. This doesn’t work everywhere, but it has been proven to work at least on
Linux.

Note that you cannot localize this setting with local(). If you try, it won’t have the
desired effect.

The latest version of the code is shown in Example 10-17.

Example 10-16. fork4.pl

my $r = shift;
$r->send_http_header('text/plain');

defined (my $kid = fork) or die "Cannot fork: $!";
if ($kid) {
 waitpid($kid,0);
 print "Parent has finished\n";
}
else {
 # do something
 CORE::exit(0);
}

Example 10-17. fork5.pl

my $r = shift;
$r->send_http_header('text/plain');

$SIG{CHLD} = 'IGNORE';

defined (my $kid = fork) or die "Cannot fork: $!\n";
if ($kid) {
 print "Parent has finished\n";

,ch10.23775 Page 375 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

376 | Chapter 10: Improving Performance with Shared Memory and Proper Forking

Note that the waitpid() call is gone. The $SIG{CHLD} = 'IGNORE'; statement protects
us from zombies, as explained above.

Another solution (more portable, but slightly more expensive) is to use a double fork
approach, as shown in Example 10-18.

Grandkid becomes a child of init—i.e., a child of the process whose PID is 1.

Note that the previous two solutions do allow you to determine the exit status of the
process, but in our example, we don’t care about it.

Yet another solution is to use a different SIGCHLD handler:

use POSIX 'WNOHANG';
$SIG{CHLD} = sub { while(waitpid(-1,WNOHANG)>0) { } };

This is useful when you fork() more than one process. The handler could call wait()
as well, but for a variety of reasons involving the handling of stopped processes and
the rare event in which two children exit at nearly the same moment, the best tech-
nique is to call waitpid() in a tight loop with a first argument of -1 and a second
argument of WNOHANG. Together these arguments tell waitpid() to reap the next child
that’s available and prevent the call from blocking if there happens to be no child
ready for reaping. The handler will loop until waitpid() returns a negative number or
zero, indicating that no more reapable children remain.

}
else {
 # do something time-consuming
 CORE::exit(0);
}

Example 10-18. fork6.pl

my $r = shift;
$r->send_http_header('text/plain');

defined (my $kid = fork) or die "Cannot fork: $!\n";
if ($kid) {
 waitpid($kid,0);
}
else {
 defined (my $grandkid = fork) or die "Kid cannot fork: $!\n";
 if ($grandkid) {
 CORE::exit(0);
 }
 else {
 # code here
 # do something long lasting
 CORE::exit(0);
 }
}

Example 10-17. fork5.pl (continued)

,ch10.23775 Page 376 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Forking and Executing Subprocesses from mod_perl | 377

While testing and debugging code that uses one of the above examples, you might
want to write debug information to the error_log file so that you know what’s hap-
pening.

Read the perlipc manpage for more information about signal handlers.

A Complete Fork Example
Now let’s put all the bits of code together and show a well-written example that
solves all the problems discussed so far. We will use an Apache::Registry script for
this purpose. Our script is shown in Example 10-19.

The script starts with the usual declaration of strict mode, then loads the POSIX
and Apache::SubProcess modules and imports the setsid() symbol from the POSIX
package.

Example 10-19. proper_fork1.pl

use strict;
use POSIX 'setsid';
use Apache::SubProcess;

my $r = shift;
$r->send_http_header("text/plain");

$SIG{CHLD} = 'IGNORE';
defined (my $kid = fork) or die "Cannot fork: $!\n";
if ($kid) {
 print "Parent $$ has finished, kid's PID: $kid\n";
}
else {
 $r->cleanup_for_exec(); # untie the socket
 chdir '/' or die "Can't chdir to /: $!";
 open STDIN, '/dev/null' or die "Can't read /dev/null: $!";
 open STDOUT, '>/dev/null' or die "Can't write to /dev/null: $!";
 open STDERR, '>/tmp/log' or die "Can't write to /tmp/log: $!";
 setsid or die "Can't start a new session: $!";

 my $oldfh = select STDERR;
 local $| = 1;
 select $oldfh;
 warn "started\n";

 # do something time-consuming
 sleep 1, warn "$_\n" for 1..20;
 warn "completed\n";

 CORE::exit(0); # terminate the process
}

,ch10.23775 Page 377 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

378 | Chapter 10: Improving Performance with Shared Memory and Proper Forking

The HTTP header is sent next, with the Content-Type of text/plain. To avoid zom-
bies, the parent process gets ready to ignore the child, and the fork is called.

The if condition evaluates to a true value for the parent process and to a false value
for the child process; therefore, the first block is executed by the parent and the sec-
ond by the child.

The parent process announces its PID and the PID of the spawned process, and fin-
ishes its block. If there is any code outside the if statement, it will be executed by the
parent as well.

The child process starts its code by disconnecting from the socket, changing its
current directory to /, and opening the STDIN and STDOUT streams to /dev/null (this
has the effect of closing them both before opening them). In fact, in this example
we don’t need either of these, so we could just close() both. The child process
completes its disengagement from the parent process by opening the STDERR stream
to /tmp/log, so it can write to that file, and creates a new session with the help of
setsid(). Now the child process has nothing to do with the parent process and can
do the actual processing that it has to do. In our example, it outputs a series of
warnings, which are logged to /tmp/log:

my $oldfh = select STDERR;
local $| = 1;
select $oldfh;
warn "started\n";
do something time-consuming
sleep 1, warn "$_\n" for 1..20;
warn "completed\n";

We set $|=1 to unbuffer the STDERR stream, so we can immediately see the debug out-
put generated by the program. We use the keyword local so that buffering in other
processes is not affected. In fact, we don’t really need to unbuffer output when it is
generated by warn(). You want it if you use print() to debug.

Finally, the child process terminates by calling:

CORE::exit(0);

which makes sure that it terminates at the end of the block and won’t run some code
that it’s not supposed to run.

This code example will allow you to verify that indeed the spawned child process has
its own life, and that its parent is free as well. Simply issue a request that will run this
script, see that the process starts writing warnings to the file /tmp/log, and issue a
complete server stop and start. If everything is correct, the server will successfully
restart and the long-term process will still be running. You will know that it’s still
running if the warnings are still being written into /tmp/log. If Apache takes a long
time to stop and restart, you may need to raise the number of warnings to make sure
that you don’t miss the end of the run.

,ch10.23775 Page 378 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Forking and Executing Subprocesses from mod_perl | 379

If there are only five warnings to be printed, you should see the following output in
the /tmp/log file:

started
1
2
3
4
5
completed

Starting a Long-Running External Program
What happens if we cannot just run Perl code from the spawned process? We may
have a compiled utility, such as a program written in C, or a Perl program that can-
not easily be converted into a module and thus called as a function. In this case, we
have to use system(), exec(), qx() or `` (backticks) to start it.

When using any of these methods, and when taint mode is enabled, we must also
add the following code to untaint the PATH environment variable and delete a few
other insecure environment variables. This information can be found in the perlsec
manpage.

$ENV{'PATH'} = '/bin:/usr/bin';
delete @ENV{'IFS', 'CDPATH', 'ENV', 'BASH_ENV'};

Now all we have to do is reuse the code from the previous section.

First we move the core program into the external.pl file, then we add the shebang line
so that the program will be executed by Perl, tell the program to run under taint
mode (-T), possibly enable warnings mode (-w), and make it executable. These
changes are shown in Example 10-20.

Now we replace the code that we moved into the external program with a call to
exec() to run it, as shown in Example 10-21.

Example 10-20. external.pl

#!/usr/bin/perl -Tw

open STDIN, '/dev/null' or die "Can't read /dev/null: $!";
open STDOUT, '>/dev/null' or die "Can't write to /dev/null: $!";
open STDERR, '>/tmp/log' or die "Can't write to /tmp/log: $!";

my $oldfh = select STDERR;
local $| = 1;
select $oldfh;
warn "started\n";
do something time-consuming
sleep 1, warn "$_\n" for 1..20;
warn "completed\n";

,ch10.23775 Page 379 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

380 | Chapter 10: Improving Performance with Shared Memory and Proper Forking

Notice that exec() never returns unless it fails to start the process. Therefore you
shouldn’t put any code after exec()—it will not be executed in the case of success.
Use system() or backticks instead if you want to continue doing other things in the
process. But then you probably will want to terminate the process after the program
has finished, so you will have to write:

system "/home/httpd/perl/external.pl"
 or die "Cannot execute system: $!";
CORE::exit(0);

Another important nuance is that we have to close all STD streams in the forked pro-
cess, even if the called program does that.

If the external program is written in Perl, you can pass complicated data stuctures to it
using one of the methods to serialize and then restore Perl data. The Storable and
FreezeThaw modules come in handy. Let’s say that we have a program called master.pl
(Example 10-22) calling another program called slave.pl (Example 10-23).

Example 10-21. proper_fork_exec.pl

use strict;
use POSIX 'setsid';
use Apache::SubProcess;

$ENV{'PATH'} = '/bin:/usr/bin';
delete @ENV{'IFS', 'CDPATH', 'ENV', 'BASH_ENV'};

my $r = shift;
$r->send_http_header("text/html");

$SIG{CHLD} = 'IGNORE';

defined (my $kid = fork) or die "Cannot fork: $!\n";
if ($kid) {
 print "Parent has finished, kid's PID: $kid\n";
}
else {
 $r->cleanup_for_exec(); # untie the socket
 chdir '/' or die "Can't chdir to /: $!";
 open STDIN, '/dev/null' or die "Can't read /dev/null: $!";
 open STDOUT, '>/dev/null' or die "Can't write to /dev/null: $!";
 open STDERR, '>&STDOUT' or die "Can't dup stdout: $!";
 setsid or die "Can't start a new session: $!";

 exec "/home/httpd/perl/external.pl" or die "Cannot execute exec: $!";
}

Example 10-22. master.pl

we are within the mod_perl code
use Storable ();
my @params = (foo => 1, bar => 2);

,ch10.23775 Page 380 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Forking and Executing Subprocesses from mod_perl | 381

As you can see, master.pl serializes the @params data structure with Storable::freeze
and passes it to slave.pl as a single \argument. slave.pl recovers it with Storable::
thaw, by shifting the first value of the @ARGV array (if available). The FreezeThaw mod-
ule does a very similar thing.

Starting a Short-Running External Program
Sometimes you need to call an external program and you cannot continue before this
program completes its run (e.g., if you need it to return some result). In this case, the
fork solution doesn’t help. There are a few ways to execute such a program. First,
you could use system():

system "perl -e 'print 5+5'"

You would never call the Perl interperter for doing a simple calculation like this, but
for the sake of a simple example it’s good enough.

The problem with this approach is that we cannot get the results printed to STDOUT.
That’s where backticks or qx() can help. If you use either:

my $result = `perl -e 'print 5+5'`;

or:

my $result = qx{perl -e 'print 5+5'};

the whole output of the external program will be stored in the $result variable.

Of course, you can use other solutions, such as opening a pipe (|) to the program if
you need to submit many arguments. And there are more evolved solutions pro-
vided by other Perl modules, such as IPC::Open2 and IPC::Open3, that allow you to
open a process for reading, writing, and error handling.

Executing system() or exec() in the Right Way
The Perl exec() and system() functions behave identically in the way they spawn a
program. Let’s use system() as an example. Consider the following code:

system("echo", "Hi");

my $params = Storable::freeze(\@params);
exec "./slave.pl", $params or die "Cannot execute exec: $!";

Example 10-23. slave.pl

#!/usr/bin/perl -w
use Storable ();
my @params = @ARGV ? @{ Storable::thaw(shift)||[] } : ();
do something

Example 10-22. master.pl (continued)

,ch10.23775 Page 381 Thursday, November 18, 2004 12:40 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

382 | Chapter 10: Improving Performance with Shared Memory and Proper Forking

Perl will use the first argument as a program to execute, find the echo executable
along the search path, invoke it directly, and pass the string “Hi” as an argument.

Note that Perl’s system() is not the same as the standard libc system(3) call.

If there is more than one argument to system() or exec(), or the argument is an
array with more than one element in it, the arguments are passed directly to the C-
level functions. When the argument is a single scalar or an array with only a single
scalar in it, it will first be checked to see if it contains any shell metacharacters (e.g.,
*, ?). If there are any, the Perl interpreter invokes a real shell program (/bin/sh -c on
Unix platforms). If there are no shell metacharacters in the argument, it is split into
words and passed directly to the C level, which is more efficient.

In other words, only if you do:

system "echo *"

will Perl actually exec() a copy of /bin/sh to parse your command, which may incur a
slight overhead on certain OSes.

It’s especially important to remember to run your code with taint mode enabled
when system() or exec() is called using a single argument. There can be bad conse-
quences if user input gets to the shell without proper laundering first. Taint mode
will alert you when such a condition happens.

Perl will try to do the most efficient thing no matter how the arguments are passed,
and the additional overhead may be incurred only if you need the shell to expand
some metacharacters before doing the actual call.

References
• Mastering Regular Expressions, by Jeffrey E. F. Friedl (O’Reilly).

• Chapters 2 and 4 in Operating Systems: Design And Implementation, by Andrew
S. Tanenbaum and Albert S. Woodhull (Prentice Hall).

• Chapter 4 in Modern Operating Systems, by Andrew S. Tanenbaum (Prentice
Hall).

• Chapters 7 and 9 in Design of the UNIX Operating System, by Maurice J. Bach
(Prentice Hall).

• Chapter 9 (“Tuning Apache and mod_perl”) in mod_perl Developer’s Cookbook,
by Geoffrey Young, Paul Lindner, and Randy Kobes (Sams Publishing).

• The Solaris memory system, sizing, tools, and architecture: http://www.sun.com/
sun-on-net/performance/vmsizing.pdf.

• Refer to the Unix Programming Frequently Asked Questions to learn more about
fork() and related system calls: http://www.erlenstar.demon.co.uk/unix/faq_toc.
html.

,ch10.23775 Page 382 Thursday, November 18, 2004 12:40 PM

