é ,ch07.23366 Page 307 Thursday, November 18, 2004 12:39 PM

*

CHAPTER 7

Identifying Your Performance
Problems

You have been assigned to improve the performance of your company’s web service.
The hardest thing is to get started. How should you tackle this task? And how do
you sort out the insignificant issues and identify those that will make a difference
once resolved?

In this chapter, we look at this problem from different angles. Only after you under-
stand the problem should you start looking for solutions. Don’t search for a solution
before the problem has been precisely identified, or you’ll end up wasting a lot of
time concentrating on trivial issues. Instead, try to identify where you can make the
biggest difference in performance.

Note that in this book, we use the term “web service” to mean the whole aggregate
that provides the service: the machine, the network, and the software. Don’t confuse
this with web services such as SOAP and XML-RPC.

Looking at the Big Picture

To make the user’s web-browsing experience as painless as possible, every effort
must be made to wring the last drop of performance from the server. Many factors
affect web site usability, but one of the most important is speed. (This applies to any
web server, not just Apache.)

How do we measure the speed of a server? Since the user (and not the computer) is
the one that interacts with the web site, one good speed measurement is the time
that elapses between the moment the user clicks on a link or presses a Submit but-
ton, and the time when the resulting page is fully rendered in his browser.

The requests and resulting responses are broken into packets. Each packet has to
make its own way from one machine to another, perhaps passing through many
interconnection nodes. We must measure the time starting from when the request’s
first packet leaves our user’s machine to when the reply’s last packet arrives back
there.

307

4~ 4

*@%

é ,ch07.23366 Page 308 Thursday, November 18, 2004 12:39 PM

A request may be made up of several packets, and a response may contain a few hun-
dred (typical for a GET request). Remember that the Internet standard for Maximum
Transmission Unit (MTU), which is the size of a TCP/IP packet, is 576 bytes. While
the packet size can be 1,500 bytes or more, if it crosses a network where the MTU is
576, it will be broken into smaller packets.

It is also possible that a request will be made up of many more packets than its
response (typical for a POST request where an uploaded file is followed by a short
confirmation response). Therefore, it is important to optimize the handling of both
the input and the output.

A web server is only one of the entities the packets see on their journey. If we follow
them from browser to server and back again, they may travel via different routes
through many different entities. For example, here is the route the packets may go
through to reach perl.apache.org from our machine:

% /usr/sbin/traceroute -n perl.apache.org

traceroute to perl.apache.org (63.251.56.142), 30 hops max, 38 byte packets

1 10.0.0.1 0.847 ms 1.827 ms 0.817 ms
2 165.21.104.1 7.628 ms 11.271 ms 12.646 ms
3 165.21.78.37 8.613 ms 7.882 ms 12.479 ms
4 202.166.127.28 10.131 ms 8.686 ms 12.163 ms
5 203.208.145.125 9.033 ms 7.281 ms 9.930 ms
6 203.208.172.30 225.319 ms 231.167 ms 234.747 ms
7 203.208.172.46 252.473 ms *252.602 ms
8 198.32.176.29 250.532 ms 251.693 ms 226.962 ms
9 207.136.163.125 232.632 ms 231.504 ms 232.019 ms
10 206.132.110.98 225.417 ms 224.801 ms 252.480 ms
11 206.132.110.138 254.443 ms 225.056 ms 259.674 ms
12 64.209.88.54 227.754 ms 226.362 ms 253.664 ms
13 63.251.63.71 252.921 ms 252.573 ms 258.014 ms
14 64.125.132.18 237.191 ms 234.256 ms *

15 63.251.56.142 254.539 ms 252.895 ms 253.895 ms

As you can see, the packets travel through 14 gateways before they reach perl.apache.
org. Each of the hops between these gateways may slow down the packet.

Before they are processed by the server, the packets may have to go through proxy
servers, and if the request contains more than one packet, packets might arrive at the
server by different routes and at different times. It is possible that some packets may
arrive out of order, causing some that arrive earlier to have to wait for other packets
before they can be reassembled into a chunk of the request message that can then be
read by the server. The whole process is then repeated in the opposite direction as
response packets travel back to the browser.

Even if you work hard to fine-tune your web server’s performance, a slow Network
Interface Card (NIC) or a slow network connection from your server might defeat it
all. That is why it is important to think about the big picture and to be aware of pos-
sible bottlenecks between your server and the Web.

308 | Chapter7: Identifying Your Performance Problems

4~ ~4]e

é ,ch07.23366 Page 309 Thursday, November 18, 2004 12:39 PM

Of course, there is little you can do if the user has a slow connection. You might tune
your scripts and web server to process incoming requests ultra quickly, so you will
need only a small number of working servers, but even then you may find that the
server processes are all busy waiting for slow clients to accept their responses.

There are techniques to cope with this. For example, you can compress the response
before delivery. If you are delivering a pure text response, gzip compression will
reduce the size of the sent text by two to five times.

You should analyze all the components involved when you try to create the best ser-
vice for your users, not just the web server or the code that the web server executes.

A web service is
like a car,
if one of the
parts or mechanisms is broken
the car may ~ not ~ run smoothly;
it can even stop dead if pushed too
far without first fixing it.
__/ ___/

If you want to have success in the web service business, you should start worrying
about the client’s browsing experience, not only how good your code benchmarks are.

Asking the Right Questions

There is much more to the web service than writing the code, and firing the server to
crunch this code. But before you specify a set of questions that will lead you to the
coverage of the whole mechanism and not just a few of its components, it is hard to
know what issues are to be checked, what components are to be watched, and what
software is to be monitored. The better questions you ask, the better coverage you
should have.

Let’s raise a few questions and look at some possible answers.

Q' How long does it take to process each request? What is the request distribution?

A: Obviously you will have more than one script and handler, and each one might
be called in different modes; the amount of processing to be done may be differ-
ent in every case. Therefore, you should attempt to benchmark your code, using
all the modes in which it can be executed. It is good to learn the average case, as
well as to learn the edges—the worst and best cases.

It is also very important to find out the distribution of different requests relative to
the total number of requests. You might have only two handlers: one very slow and
the other very fast. If you optimize for the average case without finding out the
request distribution, you might end up under-optimizing your server, if in fact the
slow request handler has a much higher call rate than the fast one. Or you might

Asking the Right Questions | 309

4~ ~4]e

é ,ch07.23366 Page 310 Thursday, November 18, 2004 12:39 PM

have your server over-optimized, if the slow handler is used much less frequently
than the fast handler.

Remember that users can never be trusted not to do unexpected things such as
uploading huge core dump files, messing with HTML forms, and supplying param-
eters and values you didn’t consider. Which leads us to two things. First, it is not
enough to test the code with automatic offline benchmarking, because chances are
you will forget a few possible scenarios. You should try to log the requests and
their execution times on the live server and watch the real picture. Secondly, after
everything has been optimized, you should add a safety margin so your server
won’t be rendered unusable when heavily hit by the worst-case usage load.

How many requests can the server process simultaneously?

The number of simultaneous requests you can handle is equal to the number of
web server processes you can afford to run. This all translates to the amount of
main memory (RAM) available to the web server. Note that we are not talking
about the amount of RAM installed on your machine, since this number is mis-
leading. Each machine is running many processes in addition to the web server
processes. Most of these don’t consume a lot of memory, but some do. It is pos-
sible that your web servers share the available RAM with big memory consum-
ers such as SQL engines or proxy servers. The first step is to figure out what is
the real amount of memory dedicated to your web server.

How many simultaneous requests is the site expected to service? What is the
expected request rate?

This question sounds similar to the previous one, but it is different in essence.
You should know your server’s abilities, but you also need to have a realistic
estimate of the expected request rate.

Are you really expecting eight million hits per day? What is the expected peak
load, and what kind of response time do you need to guarantee? Doing market
research would probably help to identify the potential request rates, and the code
you develop should be written in a scalable way, to allow you to add a few more
machines to accommodate the possibility of rising demand.

Remember that whatever statistics you gathered during your last service analysis
might change drastically when your site gains popularity. When you get a very
high hit rate, in most cases the resource requirements grow exponentially, not lin-
early!

Also remember that whenever you apply code changes it is possible that the new
code will be more resource-hungry than the previous code. The best case is when
the new code requires fewer resources, but generally this is not the case.

If you machine runs the service perfectly well under normal loads, but the load is
subject to occasional peaks—e.g., a product announcement or a special offer—it is
possible to maintain performance without changing the web service at all. For

310

| Chapter7: Identifying Your Performance Problems

%

é ,ch07.23366 Page 311 Thursday, November 18, 2004 12:39 PM

example, some services can be switched off temporarily to cope with a peak. Also
avoid running heavy, non-urgent processes (backups, cron jobs, etc.) during the
peak times.

Q: Who are the users?

A: Just as it is important for a public speaker to know her audience in order to pro-
vide a successful presentation and deliver the right points, it is important to
know who your users are and what can be expected from them.

If you are administering an Intranet web service (internal to a company, publicly
inaccessible), you can tell what connection speed most of your users have, the
number of possible users, and therefore the maximum request rate. You can be sure
that the service will not gain a sudden popularity that will drive the demand rate up
exponentially. Since there are a known number of users in your company, you
know the expected limit. You can optimize the Intranet web service for high-speed
connections, but don’t forget that some users might connect to the Intranet with a
slower dial-up connection. Also, you probably know at what hours your users will
use the service (unless your company has branches all over the world, which
requires 24-hour server availability) and can optimize service during those hours.

If you are administering an Internet web service, your knowledge of your audience
is very limited. Depending on your target audience, it can be possible to learn about
usage patterns and obtain some numerical estimates of the possible demands. You
can either attempt to do the research by yourself or hire professionals to do this
work for you. There are companies who release various survey reports available for
purchase.

Once your service is running in the ideal way, know what to expect by keeping up
with the server statistics. This will allow you to identify possible growth trends.
Certainly, most web services cannot stand the so-called Slashdot Effect, which hap-
pens when some very popular news service (Slashdot, for instance) releases an
exotic report on your service and suddenly all readers of this news service are try-
ing to hit your site. The effect can be a double-edged sword: on one side you gain
free advertising, but on the other side your server may not be able to withstand the
suddenly increased load. If that’s the case, most clients may not succeed in getting
through.

Just as with the Intranet server, it is possible that your users are all located in a
given time zone (e.g., for a particular country-specific service), in which case you
know that hardly any users will be hitting your service in the early morning. The
peak will probably occur during late evening and early night hours, and you can
optimize your service during these times.

Q: How can we protect ourselves from the Slashdot Effect?

A: Use mod_throttle. mod_throttle allows you to limit the use of your server based
on different metrics, configurable per vhost/location/file. For example, you can
limit requests for the URL /old_content to a maximum of four connections per

Asking the Right Questions | 311

4~ ~4]e

é ,ch07.23366 Page 312 Thursday, November 18, 2004 12:39 PM

*

second. Using mod_throttle will help you prioritize different parts of your server,
allowing smart use of limited bandwidth and limiting the effect of spikes.

Q: Does load balancing help in this area?

A: Yes. Load balancing, using mod_backhand, Cisco LocalDirector, or similar
products, lets you wring the most performance out of your servers by spreading
the load across a group of servers.

Q: How can we deal with the situation where we can afford only a limited amount of
bandwidth but some of the service’s content is large (e.g., streaming media or large
files)?

A: mod_bandwidth is a module for the Apache web server that enables the setting
of server-wide or per-connection bandwidth limits, based on the directory, size
of files, and remote IP/domain.

Also see Akamai, which allows you to cache large content in regionally specific
areas (e.g., east/west coast in the U.S.).

The given list of questions is in no way complete, and each specific project will have
a different set of questions and answers. Some will be retained from project to
project; others will be replaced by new ones. Remember that this is not a one-size-
fits-all glove. While partial functionality can generally be optimized using the same
method, you will have to go through this question-and-answer process each time
from scratch if you want to achieve the best performance.

References

* http://slashdot.org/ is a site for geeks with news interesting to geeks. It has become
very popular and gathers large crowds of people who read the posted articles and
participate in various discussions. When a news story posted on this site appeals
to a large number of Slashdot readers, the site mentioned in the news story often
suddenly becomes a new mecca during the day the story was posted and the next
few days. If the site’s owner has just a small machine and never expected to gain
such popularity in so little time, the server is generally unable to supply the
demand and often dies. This is known as the Slashdot Effect.

* Web Performance Tuning, by Patrick Killelea (O’Reilly).

* The mod_throttle home page: http://www.snert.com/Software/mod_throttle/.

* The mod_bandwidth home page: http://www.cohprog.com/mod_bandwidth.html.
* The mod_backhand home page: http://www.backhand.org/mod_backhand/.

312 | Chapter7: Identifying Your Performance Problems

4~ 4

*@%

