é ,appd.27763 Page 804 Thursday, November 18, 2004 12:49 PM

*

APPENDIX D
The Template Toolkit

This appendix provides an introduction to the Template Toolkit, a fast, flexible,
powerful, and extensible template processing system written in Perl.” It is ideally
suited for use in creating highly customized static and dynamic web pages and for
building Perl-based web applications. This appendix explains how to get the best out
of the Template Toolkit under mod_perl (although the Template Toolkit is in no
way limited to use under mod_perl). All the example code is available for download
from this book’s web site (http://www.modperl.com/).

This appendix’s goal is to give you a flavor of what the Template Toolkit can do for
you and your web sites. It is by no means comprehensive, and you’re strongly urged
to consult the copious documentation that is bundled with the Perl modules or avail-
able for browsing online at the Template Toolkit web site: http://template-toolkit.org/.

Fetching and Installing the Template Toolkit

You can fetch the Template Toolkit from any CPAN site. It can be found at the fol-
lowing URL: http://www.cpan.org/modules/by-module/Template/.

Once you’ve unzipped and untarred the distribution, installation proceeds via the
usual route. For example:

panic% perl Makefile.PL
panic% make

panic% make test

panic% su

panic# make install

* There are also some optional components written in C for speed, but you don’t need to use them if you're
looking for a pure Perl solution.

804

4~ 4

é ,appd.27763 Page 805 Thursday, November 18, 2004 12:49 PM

Alternately, you can use the CPAN.pm module to install it. Full details on installation
can be found in the INSTALL file in the distribution directory. There is also a
README file that is worth at least a passing glance.

Overview

The Template Toolkit is a collection of Perl modules, scripts, and other useful bits
and pieces that collectively implement a powerful template processing system for
generating and manipulating content. It scans through source documents looking for
special directives embedded in the text. These act as instructions to the processor to
perform certain tasks.

A simple directive might just insert the value of a variable:
Home
or perhaps include and process another template:

[% INCLUDE header
title = 'A Dark and Stormy Night'
%]
More complex directives may make use of the powerful language constructs that the
Template Toolkit provides. For example:
<h3>[% users.size %] users currently logged in:</h3>

[% FOREACH user = users %]
[%# 'loop' is a reference to the FOREACH iterator -%]
<1i>[% loop.count %]/[% loop.size %]:
[% user.name %]
[% IF user.about %]
<p>[% user.about %]</p>
[% END %]
[% INCLUDE userinfo %]
</11>
[% END %]

Chances are that you can work out what most of the above is doing without too
much explanation. That’s the general idea—to keep the templates as simple and gen-
eral as possible. It allows you to get a broad overview of what’s going on without too
much detail getting in the way.

We'll come back to this example later on and explain a little more about what’s
going on.

Typical Uses

A typical use of the Template Toolkit is as an offline tool for generating static web
pages from source templates. This alone can be invaluable as a way of consistently

Typical Uses | 805

4~ ~4]e

é ,appd.27763 Page 806 Thursday, November 18, 2004 12:49 PM

*

adding standard headers, footers, menus, or other presentation elements to all of the
pages in a web site.

The ttree utility, distributed as part of the toolkit, can be used to automatically pro-
cess an entire directory tree of files in this way. Rather than creating and maintaining
web pages directly, you write your pages as source templates and use ttree to run
them through the Template Toolkit and publish them to a new location, ready to be
viewed or accessed by your web server. During this process, any directives embed-
ded within the templates are interpreted accordingly to build up the final HTML
content. This can be then be combined automatically with any other standard page
elements or layout templates before the output is written to the destination file.

You can also use the Template Toolkit in CGI scripts and mod_perl handlers for
generating dynamic web content. The Template module provides a simple program-
ming-level interface to the template processing engine and allows you to cleanly sep-
arate your application code from presentation logic and layout. It provides a rich set
of bindings between Perl data and code in the backend and template variables in the
frontend. That means you can call into templates from your Perl code and also call
into Perl code from your templates. You can freely pass all kinds of Perl data between
the front- and backends, in the form of scalars, hashes, lists, subroutines, and object
references, allowing you to hide all manner of internal complexity behind a simple
data interface. This makes it easy for you to perform all sorts of technical wizardry in
your templates, without having to directly expose or embed any of the Perl code that
makes it happen.

The Template Toolkit includes a number of standard plug-in modules that provide
various useful add-on functionalities. These include modules for creating HTML
tables; fetching CGI parameters; parsing and processing XML, POD, and LaTeX;
accessing databases via DBI; manipulating dates; processing URLs; and generating
graphics, to name just a few. It’s also trivially easy to load and use other existing Perl
modules. If CPAN doesn’t have what you’re looking for, you can always implement
your own custom functionality as a Perl module, which can then be loaded into the
Template Toolkit for use and reuse as required.

This approach makes your code and your templates much easier to develop and
maintain. If the people working on Perl application code are different from those
who develop the HTML pages, it allows them to work on their separate areas with-
out getting in each other’s way. Even if you're the one doing all the work, it allows
you to better separate the tasks and wear just one hat at a time. When you’re wear-
ing your application developer’s hat, you can concentrate on the Perl code and mak-
ing it work right. When you’re wearing your web page designer’s hat, you can
concentrate on the HTML markup and making it look good.

It also makes your backend code and your frontend templates more reusable. You
can have the same backend code running behind multiple sets of frontend templates,

806 | AppendixD: The Template Toolkit

%

ﬁ

*@%

é ,appd.27763 Page 807 Thursday, November 18, 2004 12:49 PM

ideal for creating different versions of the same web site localized to spoken lan-
guages or customized to different users’ requirements. You can also reuse the same
set of templates in front of different backend applications, CGI scripts, and mod_perl
handlers. Common elements such as headers, footers, and menus can be encoded as
templates and then shared between your static pages generated via ttree and your
dynamic pages generated online. The result is that you get a consistent user interface
and presentation style for all your pages, regardless of how they’re generated.

Template Toolkit Language

The Template Toolkit implements a general-purpose presentation language rather
than a general-purpose programming language. What that means is that for general
programming tasks, building backend applications, database access, and so on, you
should continue to use Perl and the many fine modules available for use with it.

The strength of the Template Toolkit language is in building the frontend—that is,
the HTML that presents the output of an application or displays the content of an
XML file, the results of a database query, the collection of snapshots of your pet
camel, or whatever it is that you’re trying to do. It has many constructs that are
familiar in programming languages, such as the use of variables (GET, SET, DEFAULT),
conditional clauses (IF, UNLESS, ELSIF, ELSE, etc.), loops (FOREACH, WHILE, SWITCH,
CASE), and exception handling (TRY, THROW, CATCH). However, these are generally
intended to be used from the perspective of layout logic; that is, controlling how the
output looks, not what the underlying application actually does. To compliment
these basic operations, there are also various directives more specifically oriented to
gluing chunks of content together (PROCESS, INCLUDE, INSERT, WRAPPER, BLOCK), for pro-
viding useful content-manipulation tools (FILTER, MACRO), and for the loading of
external modules (USE) by which the toolkit can easily and quickly be extended.

Although we are focusing on HTML in particular, it is worth pointing out that the
Template Toolkit is actually language-neutral. It operates on text files (although it
can be used to generate binary files such as images or PDF documents), and as such,
it doesn’t really care what kind of text you’re generating, be it HTML, XML, LaTeX,
PostScript, or an Apache httpd.conf configuration file.

Simple Template Example

So without further ado, let’s see what a typical template looks like:

[% PROCESS header title="Some Interesting Links" %]

<p>
Here are some interesting links:

[% FOREACH link = weblinks %]
[% link.title %]</1i>

Template Toolkit Language | 807

- ad

é ,appd.27763 Page 808 Thursday, November 18, 2004 12:49 PM

[% END %]

</p>

[% PROCESS footer %]

The first thing to note is that template directives are embedded within [% and %]. You
can change these values, along with several dozen other configuration options, but
we’ll stick with the defaults for now. The directives within those tags are instruc-
tions to the template processor. They can contain references to variables (e.g., [%
link.url %]) or language constructs that typically begin with an uppercase word and
may have additional arguments (e.g., [% PROCESS footer %]). Anything else outside
the tags is plain text and is passed through unaltered.

The example shows the PROCESS directive being used to pull in a header template at
the top of the page and a footer template at the bottom. The header and footer tem-
plates can have their own directives embedded within them and will be processed
accordingly. You can pass arguments when calling PROCESS, just as you might when
calling a subroutine in Perl. This is shown in the first line, where we set a value for
the title variable.

By default, variables are global, and if you change title in one template, the new
value will apply in any other templates that reference it. The INCLUDE directive goes a
little further to make arguments more local, giving you better protection from acci-
dentally changing a variable with global consequences. Separate variable
namespaces can also be used to avoid collisions between variables of the same name
(e.g., page.title versus book.title).

In the middle of the example, we see the FOREACH directive. This defines the start of a
repeated block that continues until the END directive two lines below. Loops, condi-
tionals, and other blocks can be combined in any way and nested indefinitely. In this
case, we're setting the link variable to alias each item in the list referenced by the
weblinks variable. We print the url and title for each item, with some appropriate
HTML markup to display them formatted as an HTML bullet list.

The dot (.) operator is used to access data items within data items, and it tries to do
the right thing according to the data type. For example, each item in the list could be
a reference to a hash array, in which case link.url would be equivalent to the Perl
code $link->{url}, or it could be an object against which methods can be called,
such as $1ink->url(). The dotted notation hides the specifics of your backend code
so that you don’t have to know or care about the specifics of the implementation.
Thus, you can change your data from hash arrays to objects at some later date and
slot them straight in without making any changes to the templates.

Let’s now go back to our earlier example and see if we can make sense of it:

<h3>[% users.size %] users currently logged in:</h3>

[% FOREACH user = users %]

808 | AppendixD: The Template Toolkit

- ad

é ,appd.27763 Page 809 Thursday, November 18, 2004 12:49 PM

[%# 'loop' is a reference to the FOREACH iterator -%]
<1i>[% loop.count %]/[% loop.size %]:
[% user.name %]
[% IF user.about %]
<p>[% user.about %]</p>
[% END %]
[% INCLUDE userinfo %]
</1i>
[% END %]

Anything outside a [% ... %] directive—in this case, various HTML fragments that are
building a list of users currently logged in to our fictional system—is passed through

intact.
The various constructs that we meet inside the directives are:

users

We're assuming here that the users variable contains a reference to a list of
users. In fact, it might also be a reference to a subroutine that generates a list of
users on demand, but that’s a backend implementation detail we’re quite rightly
not concerned with here. The Template Toolkit does the right thing to access a
list or call a subroutine to return a list, so we don’t have to worry about such
things.

The users themselves (i.e., the items in the users list) can be references to hash
arrays, or maybe references to objects. Again, the Template Toolkit hides the
implementation details and does the right thing when the time comes.

users.size
There are a number of “virtual methods” you can call on basic Perl data types.
Here, the .size virtual method returns the number of items in the users list.

FOREACH user = users
The FOREACH directive defines a block of template code up to the corresponding
END directive and processes it repeatedly for each item in the users list. For each
iteration, the user variable is set to reference the current item in the list.

loop
The loop variable is set automatically within a FOREACH block to reference a spe-
cial object (an iterator) that controls the loop. You can call various methods in
this object, such as loop.count to return the current iteration (from 1 to n) and
loop.size to return the size of the list (in this case, the same as users.size).

user
The user variable references each item in the users list in turn. This can be a ref-
erence to a hash array or an object, but we don’t care which. Again, these details
are sensibly hidden from view. We just want the home part of user, and we’re not
too worried about where it comes from or what has to be done to fetch it.

Template Toolkit Language | 809

4~ ~4]e

é ,appd.27763 Page 810 Thursday, November 18, 2004 12:49 PM

IF user.about
The IF directive defines a block that gets processed if the condition evaluates to
some true value. Here we’re simply testing to see if user.about is defined. As you
might expect, you can combine IF with ELSIF and ELSE and also use UNLESS.

INCLUDE userinfo
The INCLUDE directive is used here to process and include the output of an exter-
nal template called userinfo. The INCLUDE_PATH configuration option can be used
to specify where external templates can be found, so you can avoid hardcoding
any absolute paths in the templates. All the variables currently defined are visi-
ble within the userinfo template, allowing it to access [% user.whatever %] to
correctly reference the current user in the FOREACH loop.

We’ve created this separate userinfo template and can assume it generates a nice
table showing some interesting information about the current user. When you
have simple, self-contained elements like this, it’s often a good idea to move
them out into separate template files. For one thing, the example is easier to read
without large chunks of HTML obstructing the high-level view. A more impor-
tant benefit is that we can now reuse this component in any other template
where we need to display the same table of information about a user.

Now that you’re familiar with what templates look like, let’s move on to see how we
go about processing them.

Processing Templates

In addition to the ttree script mentioned earlier, tpage is distributed with the Tem-
plate Toolkit for no-frills simple template processing.

You might use it like this:
panic% tpage myfile.tt2 > myfile.html
or:
panic% tpage src/myfile.html > dest/myfile.html

It is extremely useful as a command-line tool to process a template without having to
write any Perl code. However, for most uses, be it an offline script, CGI application,
or mod_perl handler, you’ll want to hook the Template module into your Perl code.

To see how we would go about this, let us first take one of our earlier examples and
save it in a file called example.html (see Example D-1).

Example D-1. examplel/example.html
[% PROCESS header title="Some Interesting Links" %]
<p>

Here are some interesting links:

810 | AppendixD: The Template Toolkit

- ad

é ,appd.27763 Page 811 Thursday, November 18, 2004 12:49 PM

Example D-1. examplel/example.html (continued)

[% FOREACH link = weblinks %]
[% link.title %]</1li>
[% END %]

</p>

[% PROCESS footer %]

We’re referencing two external templates, header and footer, so we’ll have to create
them, too. See Examples D-2 and D-3.

Example D-2. examplel/header

<html>
<head>
<title>[% title %]</title>
</head>

<body bgcolor="#ffffff">

<h1>[% title %]</h1>

Example D-3. examplel/footer

<div align="center">
[% copyright %]
</div>

</body>
</html>

Now we can write a simple Perl script to process example.html, as shown in
Example D-4.:

Example D-4. examplel/process_template.pl
#!/usr/bin/perl

use strict;
use warnings;
use Template;

create template processor
my $tt = Template->new();

define data
my $data = {
copyright => "© 2002 Andy Wardley',
weblinks => [
{
url => 'http://perl.apache.org/’,
title => 'Apache/mod_perl',
1
{

Processing Templates | 811

é ,appd.27763 Page 812 Thursday, November 18, 2004 12:49 PM

Example D-4. examplel/process_template.pl (continued)

url => 'http://tt2.0rg/’,
title => 'Template Toolkit',
b

...and so on...

]
};

process template - output to STDOUT by default
$tt->process('example.html', $data)
|| die $tt->error();

After loading the Template module (use Template;) we create a Template object via
the new() constructor method. You can specify all sorts of options, either as a list of
named arguments or by reference to a hash array. If, for example, you want to put
your templates in a different directory (the default is the current working directory),
then you might do something like this:

my $tt = Template->new(INCLUDE_PATH => 'templates');
A more complete example might look like this:

my $tt = Template->new({
INCLUDE_PATH => ['/home/stas/web/tt2/templates’,
'/usr/local/tt2/templates’,

1,
PRE_PROCESS => 'header"',
POST_PROCESS => 'footer',
INTERPOLATE => 1,
POST_CHOMP => 1,

1)
The Template: :Manual: :Config manpage has full details on the various different con-
figuration options and what they do.

Once you’ve created a Template object, you can call the process() method to pro-
cess a template. The first argument specifies the template by name (relative to one of
the INCLUDE_PATH directories) or as a reference to a file handle or scalar containing the
template text. The second optional argument is a reference to a hash array of data
that defines the template variables. A third optional argument can also be provided
to indicate where the output should be directed, specified as a filename, file handle,
reference to a scalar, or object that implements a print() method (e.g., an Apache
request object $1). By default, the generated output is sent directly to STDOUT.

This is what it looks like:

<html>
<head>
<title>Some Interesting Links</title>
</head>

<body bgcolor="#ffffff">

812 | AppendixD: The Template Toolkit

4~ ~4]e

é ,appd.27763 Page 813 Thursday, November 18, 2004 12:49 PM

<h1>Some Interesting Links</h1>

<p>

Here are some interesting links:

Apache/mod perl</1i>
Template Toolkit</1i>

</p>

<div align="center">
© 2002 Andy Wardley
</div>

</body>

</html>
The external templates (header and footer) have been pulled into place and the title
reference in the header and copyright in the footer have been correctly resolved. The
body of the document is built from the data passed in as weblinks.

Apache/mod_perl Handler

There isn’t much to change between the implementation of a Perl CGI script such as
the example above and the equivalent Apache/mod_perl handler.

The great advantage of using mod_perl is that it allows you to keep a Template object
persistent in memory. The main benefit of this is that Perl can parse and compile all
the Template Toolkit code and all your application code once when the server starts,
rather than repeating it for each request. The other important benefit is that the
Template object will cache previously used templates in a compiled state, from which
they can be redeployed extremely quickly. A call to process a template becomes as
efficient as a call to a precompiled Perl subroutine (which is indeed how it is imple-
mented under the hood), bringing you runtime machine efficiency as well as the
development-time human efficiency and convenience of using a template-driven pre-
sentation system.

Example D-5 shows a typical mod_per] handler roughly equivalent to the earlier Perl
script.

Example D-5. Apache/MyTemplate.pm
package Apache::MyTemplate;

use strict;

use Apache::Constants qw(:common);
use Template;

use vars qw($TT);

Apache/mod_perl Handler | 813

é ,appd.27763 Page 814 Thursday, November 18, 2004 12:49 PM

Example D-5. Apache/MyTemplate.pm (continued)

sub handler {
my $r = shift;

create or reuse existing Template object
$TT ||= Template->new({

INCLUDE_PATH => '/usr/local/tt2/templates’,
1;

my $data = {
uri => $r->uri,
copyright => '© 2002 Andy Wardley',
weblinks => [
{
url => 'http://perl.apache.org/",
title => 'Apache/mod_perl',
1
{
url => 'http://tt2.0rg/’,
title => 'Template Toolkit',
1

Eoa—
-

..and so on...

s

$r->content _type('text/html');
$r->send_http header;

$TT->process('example.html', $data, $r) || do {
$r->log reason($TT->error());
return SERVER _ERROR;

1

return OK;

}

1;

You need to adjust the value of INCLUDE_PATH to point to the directory where header,
example.html, and footer were created.

Here’s the configuration section for the httpd.conf file:

PerIModule Apache::MyTemplate
<Location /example2>
SetHandler perl-script
PerlHandler Apache::MyTemplate
</Location>

Of course, it’s not particularly useful to have the template name hardcoded as it is
here, but it illustrates the principle. You can implement whatever kind of strategy
you like for mapping requests onto templates, using the filename, path information,
or pretty much anything else that takes your fancy. No doubt you can already spot
numerous other enhancements that you might make to your own handlers.

814 | AppendixD: The Template Toolkit

4~ ~4]e

é ,appd.27763 Page 815 Thursday, November 18, 2004 12:49 PM

Figure D-1 shows what you should expect when issuing a request to /example2.

= some Interesting Lin ama 0zi 8086

| @0 Q @ @ |% http:Macalhost S000example2 | dfga .LI”H
-
» I3 |

Some Interesting Links via mod_perl

1| Here are some interesting links:

4 « Apache/mod perl
« Template Toolkit

@ 2002 Andy Wardley
il & &F IcZ] |Do-cx.me|1:Dme(0Asecs] | |:QE:|£

Figure D-1. A sample response

Apache::Template Module

If you’re not looking to do anything too adventurous in terms of application process-
ing in your handler, the Apache: :Template module might be all you need to start pro-
cessing templates from within an Apache/mod_perl server.

Adding something like the following to your httpd.conf file is enough to engage the
Template Toolkit to automatically process template files as they are served:

PerlModule Apache::Template

set various configuration options, e.g.
TT2IncludePath /usr/local/tt2/templates
TT2PreProcess header

TT2PostProcess footer

<Files *.tt2>
SetHandler perl-script
PerlHandler Apache::Template
</Files>
We'll come back to Apache: :Template in the next section. For further examples and
guidance on using the module, see the Apache: : Template documentation.

Hangman Application

In this section we’re going to develop a web application based on the classic hang-
man example from the O’Reilly book Writing Apache Modules with Perl and C. Most
of the game logic is borrowed intact or with minor modifications. However, when it

Hangman Application | 815

- ad

é ,appd.27763 Page 816 Thursday, November 18, 2004 12:49 PM

comes to generating the HTML pages to return to the client, the script calls on the
Template Toolkit to perform the task.

Hangman CGl Script

The first implementation shows a simple all-in-one CGI script that gets the job done
quickly and easily. Following that, we’ll look at how it can be adapted into a Tem-
plate Toolkit plug-in and subsequently deployed under mod_perl.

Here’s how the CGI script begins:

#!/usr/bin/perl
#
hangman1.pl

This variation of the classic hangman game implements
the game logic at the start of the CGI script to
define a game state. It then processes an all-in-one
template to generate the HTML page.

#

#

#

#

#

#

#

The 'state' variable maintains the state of the game.

It contains the following:

word => the unknown word

guessed => list of the guessed letters

gameno => the number of words the user has tried

won => the number of times the user guessed correctly

total => the total number of incorrect guesses

left => the number of tries the user has left on this turn
#

use I0::File ();
use CGI gw(:standard);
use Template;

use strict;

use constant URL => '/cgi-bin/hangmani.pl’;

use constant ICONS => '/icons/hangman';

use constant WORDS => '/usr/games/hangman-words";
use constant TRIES => 6;

Nothing too taxing here. We provide some sensible comments, load the Perl mod-
ules we’re going to use (including the Template module, of course), and define some
constants.

Next comes the core application logic:

retrieve the state
my $state = get state();

reinitialize if we need to
$state = initialize($state) if !$state or param('restart');

process the current guess, if any
my ($message, $status) = process guess(param('guess') || '', $state);

816 | AppendixD: The Template Toolkit

4~ ~4]e

é ,appd.27763 Page 817 Thursday, November 18, 2004 12:49 PM

We first call the get state() subroutine to restore any current game state from the
CGI parameters. We'll see the definition of that subroutine a little later. For now, all
we need to know is that it might return undef, indicating that there isn’t any current
state. In this case, or if the restart CGI parameter is set, we need to call initialize()
to set the state to contain some sensible starting values.

Then we call process _guess() to process any pending guess. We pass the value of
the guess CGI parameter or an empty string if not defined, and also a reference to the
$state hash array. The subroutine returns a message and a status value that indi-
cates the current state of play.

Now that we’ve got the application processing out of the way, we can set about gen-
erating some output. To do this, we create a Template object and call its process()
method, specifying a template to process and a hash reference containing template
variables:

create a Template object
my $tt = Template->new();

define Template variables
my $vars = {
url => URL,
icons => ICONS,
tries => TRIES,
title => 'Template Toolkit Hangman #1',
state => $state,
status => $status,
message => $message,
wordmap => \8wordmap,

};

process the main template at the end of this file

$tt->process(*DATA, $vars) || die $tt->error();
In this example we’re going to define the main template in the _ DATA _ section of
the CGI script itself. The Template process() methods allows a file handle such as
*DATA to be specified in place of a template name and will read the content and pro-
cess it accordingly. Doing this allows us to separate the game logic written in Perl
from the presentation template that generates the HTML page, with the benefit of
being able to keep everything self-contained in a single file.

That’s the main body of the Perl code. Before we look at the template defined at the
end of the file, let’s look at the subroutine definitions.

The get_state() subroutine reads the values of a number of CGI parameters and
populates them into the $state hash, which it then returns:

sub get_state {
return undef unless param();
my $state = {};
foreach (qw(word gameno left won total guessed)) {
$state->{$_} = param($_);
}

Hangman Application | 817

4~ ~4]e

é ,appd.27763 Page 818 Thursday, November 18, 2004 12:49 PM

return $state;

}

The initialize subroutine is called to start a new game. It picks a new random word
and updates the existing $state hash or creates a new one:

sub initialize {
my $state = shift || { };

pick a word, any word
my $list = I0::File->new(WORDS)

|| die "Couldn't open ${\WORDS}: $!\n";
my $word;
rand($.) < 1 88 ($word = $) while <$list>;
chomp $word;

setup state
$state->{word} = $word;
$state->{left} = TRIES;
$state->{guessed} = '';
$state->{gameno} += 1;
$state->{won} += 0;
$state->{total} += 0;
return $state;

}
The process_guess() subroutine contains the core of the game logic. It processes the
guess passed as the first argument and updates the current state passed as the sec-
ond. It returns two values: a message for displaying to the user and a status flag indi-
cating the current state of play.

sub process_guess {
my($guess, $state) = @_;

lose immediately if user has no more guesses left
return ("', 'lost') unless $state->{left} > 0;

my %guessed = ma

p{$ =>1} $state->{guessed} =~ /(.)/g;
my %letters = map { $

_=> 1} $state->{word} =~ /(.)/g;

return immediately if user has already guessed the word
return ("', 'won') unless grep(!$guessed{$_}, keys %letters);

do nothing more if no guess
return ('', 'continue') unless $guess;

This section processes individual letter guesses

$guess = lc $guess;

return ("Not a valid letter or word!", 'error')
unless $guess =~ /*[a-z]+$/;

return ("You already guessed that letter!", 'error')
if $guessed{$guess};

This section is called when the user guesses the whole word
if (length($guess) > 1 and $guess ne $state->{word}) {

818 | AppendixD: The Template Toolkit

4~ ~4]e

é ,appd.27763 Page 819 Thursday, November 18, 2004 12:49 PM

$state->{total} += $state->{left};
return (qq{Loser! The word was "$state->{word}."}, 'lost')
}

update the list of guesses
foreach ($guess =~ /(.)/g) { $guessed{$ }++; }
$state->{ guessed } = join "', sort keys %guessed;

correct guess -- word completely filled in
unless (grep(!$guessed{$_}, keys %letters)) {
$state->{won}++;
return (qq{Bingola! The word was "$state->{word}."}, 'won');

}

incorrect guess
if (!$letters{$guess}) {
$state->{total}++;
$state->{left}--;
user out of turns
return (qq{The jig is up! The word was "$state->{word}".}, 'lost")
if $state->{left} <= 0;
user still has some turns
return ('Wrong guess!', 'continue');

}

correct guess but word still incomplete
return (qq{Good guess!}, 'continue');

}

In addition to these subroutines that are called from Perl, we also define wordmap()
and bind it by reference to the corresponding wordmap template argument. This
allows it to be called from within the template.
sub wordmap {
my($word, $guessed) = @ ;
my %guessed = map { $ => 1 } $guessed =~ /(.)/g;
join "', map { $guessed{$_} ? "$_ " : '_ " } $word =~ /(.)/g;
}
The subroutine expects to be passed the current word and a string containing the let-
ters previously guessed. It returns a string representing the word with only the
guessed letters shown and the others blanked out.

At the end of the script, we have the template that is processed to generate the
HTML output. Notice that it follows the _DATA__ marker, which Perl will automati-
cally bind to the *DATA file handle that we passed as the first argument to the
process() method.”

* The drawback of using the __DATA__ marker is that you cannot run this script under Apache: :Registry, as we
explained in Chapter 6. However, the script can be easily converted into a mod_perl handler, which has no
problems with the __DATA__ marker.

Hangman Application | 819

4~ ~4]e

é ,appd.27763 Page 820 Thursday, November 18, 2004 12:49 PM

In the opening segment, we first define the content type and general HTML headers.
This is followed by a directive that defines a particular format for displaying floating-
point numbers, done by means of a standard format plug-in loaded via the USE
directive. We then go on to calculate the number of tries remaining and the current
game averages, storing them in a hash array named average:

__DATA__
Content-type: text/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<html>
<head>
<title>[% title %]</title>
</head>

<body onload="if (document.gf) document.gf.guess.focus()">
[%

define a format for displaying averages

USE format('%2.3f');

how many guesses left to go?
tries_left = tries - state.left

calculate current averages
average = {
current = state.total / state.gameno
overall = state.gameno > 1
? (state.total - (tries - state.left)) / (state.gameno - 1)
0

%)

This next section displays the game title and the appropriate image for the number of
tries left. It then generates a table to display the current game averages. Note that the
format is now used to display the floating-point averages to a fixed precision.

<h1>[% title %]</h1>

<img src="[% icons %]/h[% tries left %].gif"
align="left" alt="[[% tries_left %] tries left]" />

<table width="100%">
<tr>
<td>Word #: [% state.gameno %]</td>
<td>Guessed: [% state.guessed %]</td>
</tr>
<tr>
<td>Won: [% state.won %]</td>
<td>Current average: [% format(average.current) %]</td>
<td>Overall average: [% format(average.overall) %]</td>
</tr>
</table>

820 | AppendixD: The Template Toolkit

%

é ,appd.27763 Page 821 Thursday, November 18, 2004 12:49 PM

This is where we display the current word with unguessed letters blanked out. We're
using the wordmap variable, which results in a call back to our wordmap subroutine. We
pass the current word and string of guessed letters as arguments:

<h2>Word: [% wordmap(state.word, state.guessed) %]</h2>

Is there a message to display? If so, this code makes it stand out as a red level-2 head-
ing; otherwise, it does nothing.
[% IF message -%]

<h2>[% message %]</h2>
[% END %]

Now we can generate the input form:

<form method="post" action="[% url %]" name="gf"
enctype="application/x-www-form-urlencoded">

[% FOREACH var = ['word' 'gameno' 'left’
'won' 'total' 'guessed']
%]
<input type="hidden" name="[% var %]" value="[% state.$var %]" />
[% END %]
We’'re taking the simple approach and using hidden form variables to maintain the
state of the game between requests. The FOREACH loop shown above generates these
fields for each of state.word, state.gameno, state.left, state.won, state.total, and
state.guessed. Rather than spelling out each one, it uses an interpolated variable,
state.$var. The leading $ means that the value of the var variable is used to specify
the intended item in state. In Perl, this would be just like writing $state->{ $var }.
[% IF status == 'won' or status == 'lost' %]
Do you want to play again?
<input type="submit" name="restart" value="Another game" />
[% ELSE %]
Your guess: <input type="text" name="guess" />

<input type="submit" name=".submit" value="Guess" />
[% END %]

</form>

If the current game status is “won” or “lost”, the game is over and we generate a but-
ton allowing the player to start a new game. Otherwise, it’s business as usual and we
generate an input field for the guess before closing up the form.

Finally, we have the page footer to add some trailing text and tidy up everything
nicely:

<br clear="all">
<hr />

Home

Hangman Application | 821

é ,appd.27763 Page 822 Thursday, November 18, 2004 12:49 PM

<p>
<cite style="fontsize: 10pt">graphics courtesy Andy Wardley</cite>
</p>

</body>
</html>

And that’s it! We now have a self-contained CGI script that can be installed and run
from a cgi-bin directory with little or no configuration required (see Figure D-2).

= Template Toolkit Hangman #1 - Mozilla 200

[- = :
| @Q e @ @ | % nttp:itacalost B000-binangmant gl =] C‘E;Q .['IH”
" |
» I3 |

Fs

Template Toolkit Hangman #1

Word #: 1 Guessed: aiot
Won: 0 Current average: 3.000 Overall average: 0.000

Word: _oo

~

Wrong guess!

Your guess: [_Guess |

03

Home

sraphics courtesy Andy Wardiey

4] I
ﬂ = &F lc7) |Dmnm:m(0§58m] =

Figure D-2. Self-contained CGI hangman

Hangman with Modular Templates

Perhaps the biggest limitation of the previous example is that the presentation tem-
plate isn’t at all modular. In this example, we’re going to split the one large template
into a number of smaller ones placed in separate files. This makes the main template
much simpler and easier to follow. It also allows each of the individual template
components to be updated in isolation. If you want to change the display of the
game averages, for example, then you just need to edit the status template and can
leave everything else as it is.

We're also going to use a standard html/page template, provided as part of the Tem-
plate Toolkit, to generate the required container elements to make a valid HTML

822 | AppendixD: The Template Toolkit

- ad

é ,appd.27763 Page 823 Thursday, November 18, 2004 12:49 PM

page. The default location for these templates is /usr/local/tt2/templates. You will also
need to define the directory in which you’re going to put the hangman templates. So,
to the top of the previous script, we can add the following constant definitions (tai-
lor them to your local values, of course):

use constant TEMPLATES => '/home/stas/templates/hangman2’;

use constant SHARED => '/usr/local/tt2/templates’;
Then, when we create the Template object, we specify these directories as a list refer-
ence for the INCLUDE_PATH option:

create a Template object

my $tt = Template->new({

INCLUDE_PATH => [TEMPLATES, SHARED],

D;
The rest of the script remains the same, with exception of the template specified in
the DATA _ section. This can now be written as:

_ _DATA__
Content-type: text/html

[% WRAPPER html/page
html.head.title = title
html.body.onload = 'if (document.gf) document.gf.guess.focus()’

[% PROCESS header %]

[% IF status == 'won' or status == 'lost’;
PROCESS restart;
ELSE;
PROCESS guess;
END

[% PROCESS footer %]

[% END %]

We’ve moved the header, the footer, and the two different variants of the form out
into separate templates. The entire page is enclosed within a WRAPPER block, which
generates the required <html>, <head>, and <body> tags to wrap around the page using
the standard html/page template.

The external header and footer templates are shown in Examples D-6 and D-7.
According to the value of TEMPLATES set above, these should be located in /home/stas/
templates/hangman.

Example D-6. hangman2/templates/header
<h1>[% title %]</h1>

[% # how many guesses left to go?
tries left = tries - state.left

Hangman Application | 823

é ,appd.27763 Page 824 Thursday, November 18, 2004 12:49 PM

Example D-6. hangman2/templates/header (continued)
%]

[%# display the appropriate image -%]
<img src="[% icons %]/h[% tries left %].gif"
align="left" alt="[[% tries left %] tries left]" />

[% # display the game averages
PROCESS status
%]

Example D-7. hangman2/templates/footer

<br clear="all">
<hr />

Home

<p>
<cite style="fontsize: 10pt">graphics courtesy Andy Wardley</cite>
</p>

Hangman Plug-in

To take our example a stage further, we’re going to convert this simple application
into a Template Toolkit plug-in module. A plug-in is just like any other Perl module,
except that it lives in a special namespace (Template::Plugin::*) and gets passed a
reference to a special variable, the context, when its new(') constructor is called. Plug-
ins can be loaded and used via the USE directive. Here’s what the module looks like:”

Template::Plugin::Games: :Hangman

#

Implementation of the classic hangman game written as a
plug-in module for the Template Toolkit.

#

Written by Andy Wardley.

package Template::Plugin::Games::Hangman;

use strict;

use Template::Plugin;
use Template::Exception;
use I0::File ();

use CGI;

use base qw(Template::Plugin);

* The code assumes that Perl 5.6.0 or higher is used. If you are using an older version, use the vars pragma
instead of our.

824 | AppendixD: The Template Toolkit

4~ ~4]e

é ,appd.27763 Page 825 Thursday, November 18, 2004 12:49 PM

our $URL = '/cgi-bin/hangman';
our $ICONS = '/icons/hangman';
our $WORDS = '/usr/games/hangman-words';

our $TRIES = 6;

our @STATE = qw(word gameno left won total guessed);
The start of the module is very similar to the CGI script. In this case we’re defining
everything to be in the Template: :Plugin: :Games: :Hangman namespace and specifying
that it is a subclass of the Template::Plugin module.

sub new {
my($class, $context, $config) = @ ;

create plugin object
my $self = bless {

cgi => CGI->new(),
url => $config->{ url oIl $URL,
icons => $config->{ icons } || $ICONS,
words => $config->{ words } || $WORDS,
tries => $config->{ tries } || $TRIES,
_context => $context,

}, $class;

restore current game or start new game
$self->restore() || $self->init();

return $self;

}

When the plug-in is loaded via a USE directive, the new() constructor method is
called. The first (zeroth) argument is the calling class name, Template::Plugin::
Games : :Hangman->new($context, $config), passed as a reference to a context object
through which you can access the functionality of the Template Toolkit. The second
argument is a reference to a hash array of any configuration items specified with the
USE directive.

This method defines an object, $self, using values defined in the $config hash or the
defaults specified in the approprate package variables. It then calls the restore()
method and, if restore() doesn’t return a true value, the init() method. Here are
the definitions of those methods:

sub restore {
my $self = shift;
my $cgi = $self->{ cgi };
return undef if !$cgi->param();
$self->{ $_ } = $cgi->param($_) foreach @STATE;
return undef if $cgi->param('restart');
return $self;

sub init {
my $self = shift;

Hangman Application | 825

é ,appd.27763 Page 826 Thursday, November 18, 2004 12:49 PM

pick a word, any word
my $list = I0::File->new($WORDS)

|| die "failed to open '$WORDS' : $!\n";
my $word;
rand($.) < 1 8& ($word = $) while <$list>;
chomp $word;

$self->{ word } = $word;

$self->{ left } = $self->{ tries };
$self->{ guessed } ="'";
$self->{ gameno } ;
$self->{ won }
$self->{ total }

return $self;

}

They are just like their counterparts in the earlier CGI script, with a few minor
exceptions. A CGI object is defined in $self->{ cgi } rather than using imported
subroutines, and operations are performed on $self rather than on a $state hash
array passed as an argument.

The guess() method is also very similar to the process guess() subroutine in the
CGI script:

sub guess {
my $self = shift;
my $cgi = $self->{ cgi };
my $guess = $cgi->param('guess') || return;

lose immediately if user out of guesses
return $self->state('lost")
unless $self->{ left } > 0;

my %guessed = ma
my %letters = ma

{$ =>11} $self->{ guessed } =~ /(.)/g;
{$ =>11} $self->{ word Y=~ /()18

return immediately if user has already guessed the word
return $self->state('won")
unless grep(! $guessed{ $ 1}, keys %letters);

do nothing more if no guess
return $self->state('continue') unless $guess;

process individual letter guesses

$guess = lc $guess;

return $self->state(continue => 'Not a valid letter or word!')
unless $guess =~ /"[a-z]+$/;

return $self->state(continue => 'You already guessed that letter!')
if $guessed{$guess};

handle the user guessing the whole word
if (length($guess) > 1 and $guess ne $self->{word}) {
$self->{ total } += $self->{ left };
return $self->state(lost => "You lose. The word was $self->{word}.");

826 | AppendixD: The Template Toolkit

4~ ~4]e

é ,appd.27763 Page 827 Thursday, November 18, 2004 12:49 PM

update the list of guesses and word map
foreach ($guess =~ /(.)/g) { $guessed{$ }++; }
$self->{ guessed } = join "', sort keys %guessed;

correct guess -- word completely filled in
unless (grep(!$guessed{$_}, keys %letters)) {

$self->{ won }++;

return $self->state(won => qq{You got it! The word was "$self->{word}".});
}

incorrect guess
if (!$letters{$guess}) {
$self->{total}++;
$self->{left}--;
return $self->state(lost =>
qq{No dice, dude! The word was "$self->{word}".})
if $self->{left} <= 0;
return $self->state(continue => 'Wrong guess!');

}

correct guess but word still incomplete
return $self->state(continue => 'Good guess!');

}

As a matter of convenience, we also provide the state() method, to retrieve the cur-
rent state (when called without arguments) or set both state and message (when
called with one or more arguments):

sub state {
my $self = shift;
if (@) {
$self->{ state } = shift;
$self->{ message } = join('', @);

}
else {

return $self->{ state };
}

}
We also define averages() and wordmap() as object methods:

sub averages {
my $self = shift;
return {
current => $self->{ total } / $self->{ gameno },
overall => $self->{ gameno } > 1
? ($self->{ total } + $self->{ left } - $self->{ tries })
/ ($self->{ gameno } - 1)
: 0
¥
}

sub wordmap {
my $self = shift;
my %guessed = map { $ => 1 } $self->{ guessed } =~ /(.)/g;

Hangman Application | 827

4~ ~4]e

é ,appd.27763 Page 828 Thursday, November 18, 2004 12:49 PM

join ' ', map { $guessed{$ } ? "$_ " : ' '}
$self->{ word } =~ /(.)/g;
}

We can also encode the high-level game logic in a method:

sub play {
my $self = shift;

process any current guess
$self->guess();

determine which form to use based on state
my $form = (exists $self->{ state } &&
$self->{ state } =~ /*won|lost$/)
? 'restart' : 'guess';

process the three templates: header, form and footer
$self->{ _context }->include(['header', $form, 'footer']);
}

The play() method calls guess() to process a guess and then calls on the context
object that we previously saved in _context to process three templates: the header
template, the form relevant to the current game state, and the footer template.

The script that uses this plug-in can now be made even simpler, as shown in
Example D-8.

Example D-8. hangman3.pl

#!/usr/bin/perl

#

hangman3.pl

#

CGI script using Template Toolkit Hangman plug-in.
#

use strict;
use Template;

may need to tell Perl where to find plug-in module
use 1lib qw(/usr/local/tt2/hangman/hangman3/perl51ib);

use constant TEMPLATES => '/home/stas/templates/hangman3’;
use constant SHARED => '/usr/local/tt2/templates’;

use constant URL => '/cgi-bin/hangman3.pl’;
use constant ICONS => '/icons/hangman’;
use constant WORDS => '/usr/games/hangman-words';

create a Template object
my $tt = Template->new({

INCLUDE_PATH => [TEMPLATES, SHARED],
1;

828 | AppendixD: The Template Toolkit

4~ ~4]e

é ,appd.27763 Page 829 Thursday, November 18, 2004 12:49 PM

Example D-8. hangman3.pl (continued)

define Template variables
my $vars = {

url => URL,

icons => ICONS,

words => WORDS,

title => 'Template Toolkit Hangman #3',
};

process the main template
$tt->process (*DATA, $vars)
|| die $tt->error();

Other than creating a Template object and defining variables, we don’t need to do
any special processing relevant to the hangman application. That is now handled
entirely by the plug-in.

The template defined in the ~ DATA _ section can be made to look very similar to the
earlier example. In this case, we’re loading the plug-in (Games.Hangman, corresponding
to Template::Plugin: :Games: :Hangman) and aliasing the object returned from new() to
the hangman variable. We manually call the guess() method and PROCESS external tem-
plates according to the game state:

__DATA__
Content-type: text/html

[% WRAPPER html/page
html.head.title = title
html.body.onload = 'if (document.gf) document.gf.guess.focus()";

TRY;
load the hangman plug-in
USE hangman = Games.Hangman(
words = words
icons = icons
url = url

)s

process a guess
CALL hangman.guess;

print header showing game averages
PROCESS header;

process the right form according to game state

IF hangman.state == 'won'

OR hangman.state == 'lost’;
PROCESS restart;

ELSE;

PROCESS guess;
END;

Hangman Application | 829

é ,appd.27763 Page 830 Thursday, November 18, 2004 12:49 PM

now print the footer
PROCESS footer;

CATCH;
and if any of that goes wrong...
CLEAR;
PROCESS error;

END;

END
%]

One other enhancement we’ve made is to enclose the body in a TRY block. If the
plug-in init() method fails to open the words file, it reports the error via die(). The
TRY directive allows this error to be caught and handled in the corresponding CATCH
block. This clears any output generated in the TRY block before the error occured and
processes an error template instead to report the error in a nice manner.

The template in this example controls the overall flow of the game logic. If you pre-
fer, you can simply call the play() method and have the plug-in take control. It han-
dles all the flow control for you, processing the guess and then making calls back
into the Template Toolkit to process the header, relevant form, and footer templates.

__DATA__
Content-type: text/html

[% #Template Toolkit Hangman #4
WRAPPER html/page
html.head.title = title
html.body.onload = 'if (document.gf) document.gf.guess.focus()";

TRY;
USE hangman = Games.Hangman(
words = words
icons = icons
url = url
)5
hangman.play;

CATCH;

CLEAR;

PROCESS error;
END;

%)

The complete set of templates that go with this final example are presented in Exam-
ples D-9 through D-15.

830 | AppendixD: The Template Toolkit

4~ ~4]e

é ,appd.27763 Page 831 Thursday, November 18, 2004 12:49 PM

Example D-9. hangman3/templates/header
<h1>[% title %]</h1>

[% # how many guesses left to go?
tries_left = hangman.tries - hangman.left
%]

[%# display the appropriate image -%]
<img src="[% hangman.icons %]/h[% tries left %].gif"
align="left" alt="[[% tries left %] tries left]" />

[% PROCESS status %]

Example D-10. hangman3/templates/status

[% # define a format for displaying averages
USE format('%2.3f');
average = hangman.averages;

%]

<table width="100%">

<tr>
<td>Word #: [% hangman.gameno %]</td>
<td>Guessed: [% hangman.guessed %]</td>

</tr>
<tr>
<td>Won: [% hangman.won %]</td>
<td>Current average: [% format(average.current) %]</td>
<td>Overall average: [% format(average.overall) %]</td>
</tr>
</table>

<h2>Word: [% hangman.wordmap %]</h2>

[% IF hangman.message -%]
<h2>[% hangman.message %]</h2>
[% END %]

Example D-11. hangman3/templates/guess

<form method="post" action="[% hangman.url %]"
enctype="application/x-www-form-urlencoded" name="gf">
Your guess: <input type="text" name="guess" />
<input type="submit" name=".submit" value="Guess" />
[% PROCESS state %]
</form>

Hangman Application | 831

é ,appd.27763 Page 832 Thursday, November 18, 2004 12:49 PM

Example D-12. hangman3/templates/restart

<form method="post" action="[% hangman.url %]"
enctype="application/x-www-form-urlencoded">
Do you want to play again?
<input type="submit" name="restart" value="Another game" />
[% PROCESS state %]
</form>

Example D-13. hangman3/templates/state

[% FOREACH var = ['word' 'gameno' 'left' 'won' 'total' 'guessed'] -%]
<input type="hidden" name="[% var %]" value="[% hangman.$var %]" />
[% END %]

Example D-14. hangman3/templates/footer

<br clear="all">
<hr />
Home
<p>
<cite style="fontsize: 10pt">graphics courtesy Andy Wardley</cite>
</p>

Example D-15. hangman3/templates/error

<h3>Hangman Offline</h3>

<p>

Hangman is unfortunately offline at present, reporting sick with
the following lame excuse:

<1i>[[% error.type %]] [% error.info %]</1i>

</p>

Self-Contained Hangman Template

One of the benefits of writing the hangman application as a plug-in is that you no
longer need to write a CGI script at all. You can load and use the plug-in from any
template, which you can process via a generic CGI script, a mod_perl handler, or
perhaps the Apache: : Template module.

Here’s an example of a self-contained template using the hangman plug-in. All we
need to do is to hardcode some variable values at the start of the template:

[% title = 'Template Toolkit Hangman #5'
url = '/tt2/hangman.html’
words = '/usr/games/hangman-words'
icons = '/icons/hangman’;

832 | AppendixD: The Template Toolkit

4~ ~4]e

é ,appd.27763 Page 833 Thursday, November 18, 2004 12:49 PM

WRAPPER html/page
html.head.title = title
html.body.onload = 'if (document.gf) document.gf.guess.focus()";

TRY;

USE hangman = Games.Hangman(
words = words
icons = icons
url = url

)5

hangman.play;

CATCH;
CLEAR;
PROCESS error;
END;
END
%]

If you’re using Apache::Template to run the application, you can define these vari-
ables in the Apache httpd.conf file:

PerIModule Apache::Template

TT2IncludePath /usr/local/tt2/hangman/hangman3/templates
TT2IncludePath /usr/local/tt2/templates

TT2Variable title "Template Toolkit Hangman #5"
TT2Variable words /usr/games/hangman-words
TT2Variable icons /icons/hangman

TT2Params uri

<Location /tt2/hangman.html>

SetHandler perl-script
PerlHandler Apache::Template
</Location>

Our three variables, title, words, and icons, are defined using the TT2variable direc-
tive. In addition, we use TT2Params to instruct Apache: :Template to make the request
URI available as the uri template variable. We previously used url to denote the
URL of the hangman application, so we need to make one small change to the tem-
plate. Using this dynamic uri variable should mean that the value will remain cor-

rect even if the application is moved to a new URL. The template should now look
like this:

[%
...etc...

USE hangman = Games.Hangman(

words = words

icons = icons

url = uri # now use 'uri' not 'url'
)5
...etc

Hangman Application | 833

é ,appd.27763 Page 834 Thursday, November 18, 2004 12:49 PM

*

.

The game in Figure D-3 is for you to complete.

= Template Toolkit Hangman #5 - Mozilla 8208

| Q e @ @ [|% hittp:iacalhost -B000tt2banarnan bl I dffgo .Llfm
» I [

s

Template Toolkit Hangman #5

Word #: 1 Guessed: dilnotw
Won: 0 Current average: 0.000 Overall average: 0.000

Word:wo _lddo_in_tion

-

Good guess!

Your guess: | Giess |

=

Home

graphics courtesy Andy Wardiey a
4 |1
| & & @ | Doctrent: Done . 188 26c] =

Figure D-3. White to play and mate in three moves

References

This chapter deals with a lot of code, some of which was included in listings and
some of which was not because it was too long. You can get all the code and configu-
ration files from http://modperlbook.org/.

* Template Toolkit home: http://www.template-toolkit.org/
* Template Toolkit documentation: http://www.template-toolkit.org/docs.html

* If you have any questions related to the Template Toolkit that the module docu-
mentation can’t immediately answer, you might like to post them to the Tem-
plate Toolkit mailing list. To subscribe, send an email to templates-
request@template-toolkit.org with the message “subscribe” in the body or use
the web form located at http://www.template-toolkit.org/mailman/listinfo/
templates/.

834 | AppendixD: The Template Toolkit

%

ﬁ

*%

