é ,appa.26859 Page 753 Thursday, November 18, 2004 12:48 PM

*

APPENDIX A
mod_perl Recipes

This appendix acts as a mini-cookbook for mod_perl. As we’ve mentioned many
times in this book, the mod_perl mailing list is a terrific resource for anyone work-
ing with mod_perl. Many very useful code snippets and neat techniques have been
posted to the mod_perl mailing list. In this appendix, we present the techniques that
you will find most useful in your day-to-day mod_perl programming.

Emulating the Authentication Mechanism

You can authenticate users with your own mechanism (instead of the standard one)
but still make Apache think that the user was authenticated by the standard mecha-
nism. Set the username with:

$r->connection->user('username');

Now you can use this information, for example, during logging, so that you can have
your “username” passed as if it was transmitted to Apache through HTTP authenti-
cation.

Reusing Data from POST Requests

What happens if you need to access the P0STed data more than once. For example,
suppose you need to reuse it in subsequent handlers of the same request? P0STed data
comes directly from the socket, and at the low level data can be read from a socket
only once. You have to store it to make it available for reuse.

But what do you do with large multipart file uploads? Because POSTed data is not all
read in one clump, it’s a problem that’s not easy to solve in a general way. A trans-
parent way to do this is to switch the request method from POST to GET and store the
POST data in the query string. The handler in Example A-1 does exactly that.

753

*@%

é ,appa.26859 Page 754 Thursday, November 18, 2004 12:48 PM

Example A-1. Apache/POST2GET.pm

package Apache::POST2GET;
use Apache::Constants qw(M_GET OK DECLINED);

sub handler {
my $r = shift;
return DECLINED unless $r->method eq "POST";
$r->args(scalar $r->content);
$r->method('GET");
$r->method number(M GET);
$r->headers_in->unset('Content-length');

return OK;
}
1;
In httpd.conf add:

PerlInitHandler Apache::POST2GET
or even this:

<Limit POST>
PerlInitHandler Apache::POST2GET
</Limit>
to save a few more cycles. This ensures that the handler will be called only for POST
requests.

Be aware that this will work only if the POSTed data doesn’t exceed the maximum
allowed size for GET requests. The default maximum size is 8,190 bytes, but it can be
lowered using the LimitRequestLine configuration directive.

Effectively, this trick turns the POST request into a GET request internally. Now when a
module such as CGI.pm or Apache: :Request parses the client data, it can do so more
than once, since $r->args doesn’t go away (unless you make it go away by resetting
it).

If you are using Apache: :Request, it solves this problem for you with its instance()
class method, which allows Apache::Request to be a singleton. This means that
whenever you call Apache: :Request->instance() within a single request, you always
get the same Apache: :Request object back.

Redirecting POST Requests

Under mod_cgi, it’s not easy to redirect POST requests to another location. With
mod_perl, however, you can easily redirect POST requests. All you have to do is read
in the content, set the method to GET, populate args() with the content to be for-
warded, and finally do the redirect, as shown in Example A-2.

754 | AppendixA: mod_perl Recipes

- ad

é ,appa.26859 Page 755 Thursday, November 18, 2004 12:48 PM

Example A-2. redirect.pl

use Apache::Constants gqw(M_GET);

my $r = shift;

my $content = $r->content;
$r->method("GET");

$r->method _number(M GET);
$r->headers_in->unset("Content-length");
$r->args($content);
$r->internal_redirect_handler("/new/url");

In this example we use internal redirect handler(), but you can use any other kind
of redirect with this technique.

Redirecting While Maintaining Environment
Variables

Let’s say you have a module that sets some environment variables. Redirecting most
likely tells the web browser to fetch the new page. This makes it a totally new
request, so no environment variables are preserved.

However, if you’re using internal redirect(), you can make the environment vari-
ables visible in the subprocess via subprocess_env(). The only nuance is that the %ENV
keys will be prefixed with REDIRECT . For example, $ENV{CONTENT LENGTH} will
become:

$r->subprocess_env->{REDIRECT_CONTENT_LENGTH};

Handling Cookies

Unless you use a module such as CGI::Cookie or Apache: :Cookie, you need to handle
cookies yourself. Cookies are accessed via the $ENV{HTTP_COOKIE} environment vari-
able. You can print the raw cookie string as $ENV{HTTP_COOKIE}. Here is a fairly well-
known bit of code to take cookie values and put them into a hash:

sub get cookies {
cookies are separated by a semicolon and a space, this will
split them and return a hash of cookies
my @rawCookies = split /; /, $ENV{'HTTP_COOKIE'};
my %cookies;

foreach (@rawCookies){
my($key, $val) = split /=/, $_;
$cookies{$key} = $val;

}

return %cookies;

Handling Cookies | 755

é ,appa.26859 Page 756 Thursday, November 18, 2004 12:48 PM

And here’s a slimmer version:

sub get cookies {
map { split /=/, $, 2 } split /; /, $ENV{'HTTP_COOKIE'};

Sending Multiple Cookies with the
mod_perl API

Given that you have prepared your cookies in @cookies, the following code will sub-
mit all the cookies:
for (@cookies) {
$r->headers_out->add('Set-Cookie' => $);

}

Sending Cookies in REDIRECT Responses

You should use err headers out(), not headers out(), when you want to send
cookies in a REDIRECT response or in any other non-2XX response. The difference
between headers_out() and err_headers out() is that the latter prints even on error
and persists across internal redirects (so the headers printed for ErrorDocument han-
dlers will have them). Example A-3 shows a cookie being sent in a REDIRECT.

Example A-3. redirect_cookie.pl

use Apache::Constants qw(REDIRECT OK);

my $r = shift;

prepare the cookie in $cookie

$r->err_headers out->add('Set-Cookie' => $cookie);
$r->headers_out->set(Location => $location);
$r->status(REDIRECT);

$r->send_http header;

return OK;

CGl::params in the mod_ perlish Way

Assuming that all your variables are single key-value pairs, you can retrieve request
parameters in a way similar to using CGI: :params with this technique:

my $r = shift; # or $r = Apache->request
my %params = $r->method eq 'POST' ? $r->content : $r->args;

Also take a look at Apache: :Request, which has the same API as CGI.pm for extracting
and setting request parameters but is significantly faster, since it’s implemented in C.

756 | Appendix A: mod_perl Recipes

- ad

é ,appa.26859 Page 757 Thursday, November 18, 2004 12:48 PM

*

Sending Email from mod_ perl

There is nothing special about sending email from mod_perl, it’s just that we do it a
lot. There are a few important issues. The most widely used approach is starting a
sendmail process and piping the headers and the body to it. The problem is that
sendmail is a very heavy process, and it makes mod_perl processes less efficient.

If you don’t want your process to wait until delivery is complete, you can tell send-
mail not to deliver the email straight away, but to either do it in the background or
just queue the job until the next queue run. This can significantly reduce the delay
for the mod_perl process, which would otherwise have to wait for the sendmail pro-
cess to complete. You can specify this for all deliveries in sendmail.cf, or for individ-
ual email messages on each invocation on the sendmail command line. Here are the
options:

-odb
Deliver in the background
-odq
Queue only
-odd
Queue, and also defer the DNS/NIS lookups

The current trend is to move away from sendmail and switch to using lighter mail
delivery programs such as gmail or postfix. You should check the manpage of your
favorite mailer application for equivalents to the configuration presented for sendmail.

Alternatively, you may want to use Net::SMTP to send your mail without calling an
extra process. The main disadvantage of using Net::SMTP is that it might fail to
deliver the mail because the destination peer server might be down. It can also be
very slow, in which case the mod_perl application will do nothing while it waits for
the mail to be sent.

mod_rewrite in Perl

mod_rewrite provides virtually any functionality you can think of for manipulating
URLs. Because of its highly generalized nature and use of complex regular expres-
sions, it is not easy to use and has a high learning curve.

With the help of PerlTransHandler, which is invoked at the beginning of request pro-
cessing, we can easily implement everything mod_rewrite does in Perl. For example,
if we need to perform a redirect based on the query string and URI, we can use the
following handler:

package Apache::MyRedirect;

use Apache::Constants gqw(OK REDIRECT);

use constant DEFAULT_URI => 'http://www.example.org';

mod_rewriteinPerl | 757

%

ﬁ

*@%

é ,appa.26859 Page 758 Thursday, November 18, 2004 12:48 PM

sub handler {
my $r = shift;
my %args = $r->args;
my $path = $r->uri;

my $uri = (($args{'uri'}) ? $args{'uri'} : DEFAULT URI) . $path;

$r->header out->add('Location' => $uri);
$r->status(REDIRECT);
$r->send_http_header;

return OK;

}

1;
Set it up in httpd.conf as:
PerlTransHandler Apache::MyRedirect

The code consists of four parts: retrieving the request data, deciding what to do
based on this data, setting the headers and the status code, and issuing the redirect.

So if a client submits the following request:
http://www.example.com/news/?uri=http://www2.example.com/

the $uri parameter is set to http://www2.example.com/news/, and the request will be
redirected to that URI.

Let’s look at another example. Suppose you want to make this translation before a
content handler is invoked:

/articles/10/index.html => /articles/index.html?id=10

The TransHandler shown in Example A-4 will do that for you.

Example A-4. Book/Trans.pm

package Book::Trans;

use Apache::Constants qw(:common);

sub handler {
my $r = shift;
my $uri = $r->uri;
my($id) = ($uri =~ m|~/articles/(.*?)/]);
$r->uri("/articles/index.html");
$r->args("id=$id");
return DECLINED;

}

1;

To configure this handler, add these lines to httpd.conf:

PerlModule Book::Trans
PerlTransHandler Book::Trans

758 | AppendixA: mod_perl Recipes

4~ ~4]e

é ,appa.26859 Page 759 Thursday, November 18, 2004 12:48 PM

The handler code retrieves the request object and the URI Then it retrieves the id,
using the regular expression. Finally, it sets the new value of the URI and the argu-
ments string. The handler returns DECLINED so the default Apache TransHandler will
take care of URI-to-filename remapping.

Notice the technique to set the arguments. By the time the Apache request object has
been created, arguments are handled in a separate slot, so you cannot just push them
into the original URI. Therefore, the args() method should be used.

Setting PerlHandler Based on MIME Type

It’s very easy to implement a dispatching module based on the MIME type of the
request—that is, for different content handlers to be called for different MIME types.
Example A-5 shows such a dispatcher.

Example A-5. Book/MimeTypeDispatch.pm

package Book::MimeTypeDispatch;
use Apache::Constants qw(DECLINED);

my %mime_types = (
"text/html' => \&HTML::Template::handler,
"text/plain' => \&Book::Text::handler,

)

sub handler {
my $r = shift;
if (my $h = $mime_types{$r->content type}) {
$r->push_handlers(PerlHandler => $h);
$r->handler('perl-script');

}

return DECLINED;
}
1;
__END__

This should be done with PerlFixupHandler, so we add this line in httpd.conf:
PerlFixupHandler Book::MimeTypeDispatch

After declaring the package name and importing constants, we set a translation table
of MIME types and the corresponding handlers to be called. Then comes the han-
dler, where the request object is retrieved. If the request object’s MIME type is found
in our translation table, we set the handler that should handle this request; other-
wise, we do nothing. At the end we return DECLINED so another fixup handler can
take over.

Setting PerlHandler Based on MIME Type | 759

- ad

é ,appa.26859 Page 760 Thursday, November 18, 2004 12:48 PM

Singleton Database Handles

Let’s say we have an object we want to be able to access anywhere in the code, with-
out making it a global variable or passing it as an argument to functions. The single-
ton design pattern helps here. Rather than implementing this pattern from scratch,
we will use Class::Singleton.

For example, if we have a class Book::DBIHandle that returns an instance of the
opened database connection handle, we can use it in the TransHandler phase’s han-
dler (see Example A-6).

Example A-6. Book/TransHandler.pm
package Book::TransHandler;

use Book::DBIHandle;
use Apache::Constants qw(:common);

sub handler {
my $r = shift;

my $dbh = Book::DBIHandle->instance->dbh;
$dbh->do("show tables");
...
return OK;
}
1;

We can then use the same database handle in the content-generation phase (see
Example A-7).

Example A-7. Book/ContentHandler.pm
package Book::ContentHandler;

use Book::DBIHandle;
use Apache::Constants qw(:common);

sub handler {
my $r = shift;

my $dbh = Book::DBIHandle->instance->dbh;
$dbh->do("select from foo...");
...
return OK;
}
1;

In httpd.conf, use the following setup for the TransHandler and content-generation
phases:
PerlTransHandler +Book::TransHandler

<Location /dbihandle>
SetHandler perl-script

760 | AppendixA: mod_perl Recipes

4~ ~4]e

é ,appa.26859 Page 761 Thursday, November 18, 2004 12:48 PM

PerlHandler +Book::ContentHandler
</Location>

This specifies that Book: : TransHandler should be used as the PerlTransHandler, and
Book: :ContentHandler should be used as a content-generation handler. We use the +
prefix to preload both modules at server startup, in order to improve memory shar-
ing between the processes (as explained in Chapter 10).

Book: :DBIHandle, shown in Example A-8, is a simple subclass of Class::Singleton

that is used by both handlers.

Example A-8. Book/DBIHandle.pm
package Book::DBIHandle;

use strict;
use warnings;

use DBI;

use Class::Singleton;
@Book: :DBIHandle::ISA = gw(Class::Singleton);

sub _new_instance {
my($class, $args)

@_;
my $self = DBI->connect($args->{dsn}, $args->{user},
$args->{passwd}, $args->{options})

or die "Cannot connect to database: $DBI::errstr";

return bless $self, $class;

}

sub dbh {
my $self = shift;
return $$self;

}

1

Book: :DBIHandle inherits the instance() method from Class::Singleton and over-
rides its _new instance() method. new instance() accepts the connect() argu-
ments and opens the connection using these arguments. The new _instance()
method will be called only the first time the instance() method is called.

We have used a reference to a scalar ($dbh) for the Book::DBIHandle objects. There-
fore, we need to dereference the objects when we want to access the database handle
in the code. The dbh() method does this for us.

Since each child process must have a unique database connection, we initialize the
database handle during the PerlChildInit phase, similar to DBI::connect_on_init().
See Example A-9.

Singleton Database Handles | 761

- ad

é ,appa.26859 Page 762 Thursday, November 18, 2004 12:48 PM

Example A-9. Book/ChildInitHandler.pm
package Book::ChildInitHandler;

use strict;
use Book::DBIHandle;
use Apache;

sub handler {
my $s = Apache->server;

my $dbh = Book::DBIHandle->instance(

{ dsn => $s->dir_config('DATABASE DSN'),
user => $s->dir config('DATABASE USER'),
passwd => $s->dir_config('DATABASE_PASSWD'),
options => {

AutoCommit => 0,
RaiseError => 1,
PrintError => 0,
ChopBlanks => 1,
b
}
)s

$s->log_error("$$: Book::DBIHandle object allocated, handle=$dbh");
}

1;

Here, the instance() method is called for the first time, so its arguments are passed
to the new new_instance() method. new instance() initializes the database con-
nection.

httpd.conf needs to be adjusted to enable the new ChildInitHandler:

PerlSetVar DATABASE DSN "DBI:mysql:test::localhost"
PerlSetVar DATABASE USER "foo"
PerlSetVar DATABASE_PASSWD "bar"

PerlChildInitHandler +Book::ChildInitHandler

Terminating a Child Process on Request

Completion

If you want to terminate the child process upon completion of processing the cur-

rent request, use the child terminate() method anywhere in the code:
$r->child_terminate;

Apache won’t actually terminate the child until everything it needs to do is done and
the connection is closed.

762 | AppendixA: mod_perl Recipes

4~ ~4]e

é ,appa.26859 Page 763 Thursday, November 18, 2004 12:48 PM

*

References

* mod_perl Developer’s Cookbook, by Geoffrey Young, Paul Lindner, and Randy
Kobes (Sams Publishing). Selected chapters and code examples available online
from http://'www.modperlcookbook.org/.

* For more information about signal handling, refer to the perlipc manpage

* GET and POST request methods are explained in section 9 of RFC 2068, “Hyper-
text Transfer Protocol—HTTP/1.1”

* Cookies

* RFC 2965 specifies the HTTP State Management Mechanism, which
describes three new headers, Cookie, Cookie2, and Set-Cookie2, that carry
state information between participating origin servers and user agents

* The cookie specification can be viewed at http://home.netscape.com/newsref/
std/cookie_spec.html

* BCP 44, RFC 2964, “Use of HTTP State Management,” is an important
adjunct to the cookie specification itself

* Cookie Central (http://www.cookiecentral.com/) is another good resource for
information about cookies

* “Design Patterns: Singletons,” by Brian D. Foy (The Perl Review, Volume 0,
Issue 1), available at http://www.theperlreview.com/.

References | 763

ﬁ

.

