
This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

709

Chapter 25 CHAPTER 25

Programming for mod_perl 2.0

In this chapter, we discuss how to migrate services from mod_perl 1.0 to 2.0, and
how to make the new services based on mod_perl 2.0 backward compatible with
mod_perl 1.0 (if possible). We also cover all the new Perl*Handlers in mod_perl 2.0.

Migrating to and Programming
with mod_perl 2.0
In mod_perl 2.0, several configuration directives were renamed or removed. Several
APIs also were changed, renamed, removed, or moved to new packages. Certain
functions, while staying exactly the same as in mod_perl 1.0, now reside in different
packages. Before using them, you need to find and load the new packages.

Since mod_perl 2.0 hasn’t yet been released as of this writing, it’s possible that cer-
tain things will change after the book is published. If something doesn’t work as
explained here, please refer to the documentation in the mod_perl distribution or the
online version at http://perl.apache.org/docs/2.0/ for the updated documentation.

The Shortest Migration Path
mod_perl 2.0 provides two backward-compatibility layers: one for the configuration
files and the other for the code. If you are concerned about preserving backward
compatibility with mod_perl 1.0, or are just experimenting with mod_perl 2.0 while
continuing to run mod_perl 1.0 on your production server, simply enable the code-
compatibility layer by adding:

use Apache2;
use Apache::compat;

at the top of your startup file. Backward compatibility of the configuration is enabled
by default.

,ch25.26428 Page 709 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

710 | Chapter 25: Programming for mod_perl 2.0

Migrating Configuration Files
To migrate the configuration files to mod_perl 2.0 syntax, you may need to make
certain adjustments. Several configuration directives are deprecated in 2.0 but are
still available for backward compatibility with mod_perl 1.0. If you don’t need back-
ward compatibility, consider using the directives that have replaced them.

PerlHandler

PerlHandler has been replaced with PerlResponseHandler.

PerlSendHeader

PerlSendHeader has been replaced with the PerlOptions +/-ParseHeaders directive:

PerlSendHeader On => PerlOptions +ParseHeaders
PerlSendHeader Off => PerlOptions -ParseHeaders

PerlSetupEnv

PerlSetupEnv has been replaced with the PerlOptions +/-SetupEnv directive:

PerlSetupEnv On => PerlOptions +SetupEnv
PerlSetupEnv Off => PerlOptions -SetupEnv

PerlTaintCheck

Taint mode can now be turned on with:

PerlSwitches -T

As with standard Perl, taint mode is disabled by default. Once enabled, taint mode
cannot be turned off.

PerlWarn

Warnings now can be enabled globally with:

PerlSwitches -w

PerlFreshRestart

PerlFreshRestart is a mod_perl 1.0 legacy option and doesn’t exist in mod_perl 2.0.
A full tear-down and startup of interpreters is done on restart.

If you need to use the same httpd.conf file for 1.0 and 2.0, use:

<IfDefine !MODPERL2>
 PerlFreshRestart On
</IfDefine>

,ch25.26428 Page 710 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Migrating to and Programming with mod_perl 2.0 | 711

Code Porting
mod_perl 2.0 is trying hard to be backward compatible with mod_perl 1.0. How-
ever, some things (mostly APIs) have changed. To gain complete compatibility with
1.0 while running under 2.0, you should load the compatibility module as early as
possible:

use Apache::compat;

at server startup. Unless there are forgotten things or bugs, your code should work
without any changes under the 2.0 series.

However, if you don’t have a good reason to keep 1.0 compatibility, you should try
to remove the compatibility layer and adjust your code to work under 2.0 without it.
This will improve performance. The online mod_perl documentation includes a doc-
ument (http://perl.apache.org/docs/2.0/user/porting/compat.html) that explains what
APIs have changed and what new APIs should be used instead.

If you have mod_perl 1.0 and 2.0 installed on the same system and the two use the
same Perl libraries directory (e.g., /usr/lib/perl5), to use mod_perl 2.0 make sure to
first load the Apache2 module, which will perform the necessary adjustments to @INC:

use Apache2; # if you have 1.0 and 2.0 installed
use Apache::compat;

So if before loading Apache2.pm the @INC array consisted of:

/usr/lib/perl5/5.8.0/i686-linux-thread-multi
/usr/lib/perl5/5.8.0
/usr/lib/perl5/site_perl/5.8.0/i686-linux-thread-multi
/usr/lib/perl5/site_perl/5.8.0
/usr/lib/perl5/site_perl
.

it will now look like this:

/usr/lib/perl5/site_perl/5.8.0/i686-linux-thread-multi/Apache2
/usr/lib/perl5/5.8.0/i686-linux-thread-multi
/usr/lib/perl5/5.8.0
/usr/lib/perl5/site_perl/5.8.0/i686-linux-thread-multi
/usr/lib/perl5/site_perl/5.8.0
/usr/lib/perl5/site_perl
.

Notice that a new directory was appended to the search path. If, for example, the
code attempts to load Apache::Server and there are two versions of this module
under /usr/lib/perl5/site_perl/:

5.8.0/i686-linux-thread-multi/Apache/Server.pm
 5.8.0/i686-linux-thread-multi/Apache2/Apache/Server.pm

the mod_perl 2.0 version will be loaded first, because the directory 5.8.0/i686-linux-
thread-multi/Apache2 comes before the directory 5.8.0/i686-linux-thread-multi in
@INC.

,ch25.26428 Page 711 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

712 | Chapter 25: Programming for mod_perl 2.0

Finally, mod_perl 2.0 has all its methods spread across many modules. To use these
methods, you first have to load the modules containing them. The ModPerl::
MethodLookup module can be used to figure out what modules need to be loaded. For
example, if you try to use:

$r->construct_url();

and mod_perl complains that it can’t find the construct_url() method, you can ask
ModPerl::MethodLookup:

panic% perl -MApache2 -MModPerl::MethodLookup -e print_method construct_url

This will print:

to use method 'construct_url' add:
 use Apache::URI ();

Another useful feature provided by ModPerl::MethodLookup is the preload_all_
modules() function, which preloads all mod_perl 2.0 modules. This is useful when
you start to port your mod_perl 1.0 code (though preferrably avoided in the produc-
tion environment to save memory). You can simply add the following snippet to
your startup.pl file:

use ModPerl::MethodLookup;
ModPerl::MethodLookup::preload_all_modules();

ModPerl::Registry Family
In mod_perl 2.0, Apache::Registry and friends (Apache::PerlRun, Apache::
RegistryNG, etc.) have migrated into the ModPerl:: namespace. The new family is
based on the idea of Apache::RegistryNG from mod_perl 1.0, where you can custom-
ize pretty much all the functionality by providing your own hooks. The functionality
of the Apache::Registry, Apache::RegistryBB, and Apache::PerlRun modules hasn’t
changed from the user’s perspective, except for the namespace. All these modules are
now derived from the ModPerl::RegistryCooker class. So if you want to change the
functionality of any of the existing subclasses, or you want to “cook” your own regis-
try module, it can be done easily. Refer to the ModPerl::RegistryCooker manpage for
more information.

Here is a typical registry section configuration in mod_perl 2.0:

Alias /perl/ /home/httpd/perl/
<Location /perl>
 SetHandler perl-script
 PerlResponseHandler ModPerl::Registry
 Options +ExecCGI
 PerlOptions +ParseHeaders
</Location>

As we explained earlier, the ParseHeaders option is needed if the headers are being
sent via print() (i.e., without using the mod_perl API) and comes as a replacement
for the PerlSendHeader option in mod_perl 1.0.

,ch25.26428 Page 712 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Migrating to and Programming with mod_perl 2.0 | 713

Example 25-1 shows a simple registry script that prints the environment variables.

Save the file in /home/httpd/perl/print_env.pl and make it executable:

panic% chmod 0700 /home/stas/modperl/mod_perl_rules1.pl

Now issue a request to http://localhost/perl/print_env.pl, and you should see all the
environment variables printed out.

One currently outstanding issue with the registry family is the issue with chdir().
mod_perl 1.0 registry modules always performed cdhir()s to the directory of the
script, so scripts could require modules relative to the directory of the script. Since
mod_perl 2.0 may run in a threaded environment, the registry scripts can no longer
call chdir(), because when one thread performs a chdir() it affects the whole pro-
cess—all other threads will see that new directory when calling Cwd::cwd(), which
will wreak havoc. As of this writing, the registry modules can’t handle this problem
(they simply don’t chdir() to the script’s directory); however, a satisfying solution
will be provided by the time mod_perl 2.0 is released.

Method Handlers
In mod_perl 1.0, method handlers had to be specified by using the ($$) prototype:

package Eagle;
@ISA = qw(Bird);

sub handler ($$) {
 my($class, $r) = @_;
 ...;
}

Starting with Perl Version 5.6, you can use subroutine attributes, and that’s what
mod_perl 2.0 does instead of conventional prototypes:

package Eagle;
@ISA = qw(Bird);

sub handler : method {
 my($class, $r) = @_;
 ...;
}

See the attributes manpage.

mod_perl 2.0 doesn’t support the ($$) prototypes, mainly because several callbacks
in 2.0 have more arguments than $r, so the ($$) prototype doesn’t make sense any

Example 25-1. print_env.pl

print "Content-type: text/plain\n\n";
for (sort keys %ENV){
 print "$_ => $ENV{$_}\n";
}

,ch25.26428 Page 713 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

714 | Chapter 25: Programming for mod_perl 2.0

more. Therefore, if you want your code to work with both mod_perl generations,
you should use the subroutine attributes.

Apache::StatINC Replacement
Apache::StatINC has been replaced by Apache::Reload, which works for both mod_
perl generations. To migrate to Apache::Reload, simply replace:

PerlInitHandler Apache::StatINC

with:

PerlInitHandler Apache::Reload

Apache::Reload also provides some extra functionality, covered in the module’s
manpage.

New Apache Phases and Corresponding
Perl*Handlers
Because the majority of the Apache phases supported by mod_perl haven’t changed
since mod_perl 1.0, in this chapter we will discuss only those phases and corre-
sponding handlers that were added or changed in mod_perl 2.0.

Figure 25-1 depicts the Apache 2.0 server cycle. You can see the mod_perl phases
PerlOpenLogsHandler, PerlPostConfigHandler, and PerlChildInitHandler, which we
will discuss shortly. Later, we will zoom into the connection cycle depicted in
Figure 25-2, which will expose other mod_perl handlers.

Apache 2.0 starts by parsing the configuration file. After the configuration file is
parsed, any PerlOpenLogsHandler handlers are executed. After that, any
PerlPostConfigHandler handlers are run. When the post_config phase is finished the
server immediately restarts, to make sure that it can survive graceful restarts after
starting to serve the clients.

When the restart is completed, Apache 2.0 spawns the workers that will do the
actual work. Depending on the MPM used, these can be threads, processes, or a mix-
ture of both. For example, the worker MPM spawns a number of processes, each
running a number of threads. When each child process is started
PerlChildInitHandlers are executed. Notice that they are run for each starting pro-
cess, not thread.

From that moment on each working process (or thread) processes connections until
it’s killed by the server or the server is shut down. When the server is shut down, any
registered PerlChildExitHandlers are executed.

Example 25-2 demonstrates all the startup phases.

,ch25.26428 Page 714 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

New Apache Phases and Corresponding Perl*Handlers | 715

Figure 25-1. Apache 2.0 server lifecycle

Example 25-2. Book/StartupLog.pm

package Book::StartupLog;

use strict;
use warnings;

use Apache::Log ();
use Apache::ServerUtil ();

use File::Spec::Functions;

use Apache::Const -compile => 'OK';

my $log_file = catfile "logs", "startup_log";
my $log_fh;

sub open_logs {
 my($conf_pool, $log_pool, $temp_pool, $s) = @_;
 my $log_path = Apache::server_root_relative($conf_pool, $log_file);

 $s->warn("opening the log file: $log_path");
 open $log_fh, ">>$log_path" or die "can't open $log_path: $!";
 my $oldfh = select($log_fh); $| = 1; select($oldfh);

 say("process $$ is born to reproduce");
 return Apache::OK;
}

sub post_config {
 my($conf_pool, $log_pool, $temp_pool, $s) = @_;

Connection
Loop

Connection
Loop

Restart

StartUp
and

Config

. . .

PostConfig

Connection
Loop

Server shutdown (+ChildExit)

Create processes/threads (+ChildInit)

OpenLogs

,ch25.26428 Page 715 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

716 | Chapter 25: Programming for mod_perl 2.0

Here’s the httpd.conf configuration section:

PerlModule Book::StartupLog
PerlOpenLogsHandler Book::StartupLog::open_logs
PerlPostConfigHandler Book::StartupLog::post_config
PerlChildInitHandler Book::StartupLog::child_init
PerlChildExitHandler Book::StartupLog::child_exit

When we perform a server startup followed by a shutdown, the logs/startup_log is
created, if it didn’t exist already (it shares the same directory with error_log and
other standard log files), and each stage appends to it its log information. So when
we perform:

panic% bin/apachectl start && bin/apachectl stop

the following is logged to logs/startup_log:

[Thu Mar 6 15:57:08 2003] - open_logs : process 21823 is born to reproduce
[Thu Mar 6 15:57:08 2003] - post_config: configuration is completed
[Thu Mar 6 15:57:09 2003] - END : process 21823 is shutdown

 say("configuration is completed");
 return Apache::OK;
}

sub child_exit {
 my($child_pool, $s) = @_;
 say("process $$ now exits");
 return Apache::OK;
}

sub child_init {
 my($child_pool, $s) = @_;
 say("process $$ is born to serve");
 return Apache::OK;
}

sub say {
 my($caller) = (caller(1))[3] =~ /([^:]+)$/;
 if (defined $log_fh) {
 printf $log_fh "[%s] - %-11s: %s\n",
 scalar(localtime), $caller, $_[0];
 }
 else {
 # when the log file is not open
 warn __PACKAGE__ . " says: $_[0]\n";
 }
}

END {
 say("process $$ is shutdown\n");
}

1;

Example 25-2. Book/StartupLog.pm (continued)

,ch25.26428 Page 716 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

New Apache Phases and Corresponding Perl*Handlers | 717

[Thu Mar 6 15:57:10 2003] - open_logs : process 21825 is born to reproduce
[Thu Mar 6 15:57:10 2003] - post_config: configuration is completed
[Thu Mar 6 15:57:11 2003] - child_init : process 21830 is born to serve
[Thu Mar 6 15:57:11 2003] - child_init : process 21831 is born to serve
[Thu Mar 6 15:57:11 2003] - child_init : process 21832 is born to serve
[Thu Mar 6 15:57:11 2003] - child_init : process 21833 is born to serve
[Thu Mar 6 15:57:12 2003] - child_exit : process 21833 now exits
[Thu Mar 6 15:57:12 2003] - child_exit : process 21832 now exits
[Thu Mar 6 15:57:12 2003] - child_exit : process 21831 now exits
[Thu Mar 6 15:57:12 2003] - child_exit : process 21830 now exits
[Thu Mar 6 15:57:12 2003] - END : process 21825 is shutdown

First, we can clearly see that Apache always restarts itself after the first post_config
phase is over. The logs show that the post_config phase is preceded by the open_logs
phase. Only after Apache has restarted itself and has completed the open_logs and
post_config phases again is the child_init phase run for each child process. In our
example we had the setting StartServers=4; therefore, you can see that four child
processes were started.

Finally, you can see that on server shutdown, the child_exit phase is run for each
child process and the END { } block is executed by the parent process only.

Apache also specifies the pre_config phase, which is executed before the configura-
tion files are parsed, but this is of no use to mod_perl, because mod_perl is loaded
only during the configuration phase.

Now let’s discuss each of the mentioned startup handlers and their implementation
in the Book::StartupLog module in detail.

Server Configuration and Startup Phases
open_logs, configured with PerlOpenLogsHandler, and post_config, configured with
PerlPostConfigHandler, are the two new phases available during server startup.

PerlOpenLogsHandler

The open_logs phase happens just before the post_config phase.

Handlers registered by PerlOpenLogsHandler are usually used for opening module-
specific log files (e.g., httpd core and mod_ssl open their log files during this phase).

At this stage the STDERR stream is not yet redirected to error_log, and therefore any
messages to that stream will be printed to the console from which the server is start-
ing (if one exists).

The PerlOpenLogsHandler directive may appear in the main configuration files and
within <VirtualHost> sections.

Apache will continue executing all handlers registered for this phase until the first
handler returns something other than Apache::OK or Apache::DECLINED.

,ch25.26428 Page 717 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

718 | Chapter 25: Programming for mod_perl 2.0

As we saw in the Book::StartupLog::open_logs handler, the open_logs phase han-
dlers accept four arguments: the configuration pool,* the logging streams pool, the
temporary pool, and the server object:

sub open_logs {
 my($conf_pool, $log_pool, $temp_pool, $s) = @_;
 my $log_path = Apache::server_root_relative($conf_pool, $log_file);

 $s->warn("opening the log file: $log_path");
 open $log_fh, ">>$log_path" or die "can't open $log_path: $!";
 my $oldfh = select($log_fh); $| = 1; select($oldfh);

 say("process $$ is born to reproduce");
 return Apache::OK;
}

In our example the handler uses the Apache::server_root_relative() function to set
the full path to the log file, which is then opened for appending and set to unbuf-
fered mode. Finally, it logs the fact that it’s running in the parent process.

As you’ve seen in this example, this handler is configured by adding the following to
httpd.conf:

PerlOpenLogsHandler Book::StartupLog::open_logs

PerlPostConfigHandler

The post_config phase happens right after Apache has processed the configuration
files, before any child processes are spawned (which happens at the child_init phase).

This phase can be used for initializing things to be shared between all child pro-
cesses. You can do the same in the startup file, but in the post_config phase you have
access to a complete configuration tree.

The post_config phase is very similar to the open_logs phase. The
PerlPostConfigHandler directive may appear in the main configuration files and
within <VirtualHost> sections. Apache will run all registered handlers for this phase
until a handler returns something other than Apache::OK or Apache::DECLINED. This
phase’s handlers receive the same four arguments as the open_logs phase’s handlers.
From our example:

sub post_config {
 my($conf_pool, $log_pool, $temp_pool, $s) = @_;
 say("configuration is completed");
 return Apache::OK;
}

This example handler just logs that the configuration was completed and returns
right away.

* Pools are used by Apache for memory-handling functions. You can make use of them from the Perl space,
too.

,ch25.26428 Page 718 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

New Apache Phases and Corresponding Perl*Handlers | 719

This handler is configured by adding the following to httpd.conf:

PerlOpenLogsHandler Book::StartupLog::post_config

PerlChildInitHandler

The child_init phase happens immediately after a child process is spawned. Each
child process (not a thread!) will run the hooks of this phase only once in its life-
time.

In the prefork MPM this phase is useful for initializing any data structures that
should be private to each process. For example, Apache::DBI preopens database con-
nections during this phase, and Apache::Resource sets the process’s resource limits.

The PerlChildInitHandler directive should appear in the top-level server configura-
tion file. All PerlChildInitHandlers will be executed, disregarding their return values
(although mod_perl expects a return value, so returning Apache::OK is a good idea).

In the Book::StartupLog example we used the child_init() handler:

sub child_init {
 my($child_pool, $s) = @_;
 say("process $$ is born to serve");
 return Apache::OK;
}

The child_init() handler accepts two arguments: the child process pool and the
server object. The example handler logs the PID of the child process in which it’s run
and returns.

This handler is configured by adding the following to httpd.conf:

PerlOpenLogsHandler Book::StartupLog::child_init

PerlChildExitHandler

The child_exit phase is executed before the child process exits. Notice that it hap-
pens only when the process exits, not when the thread exits (assuming that you are
using a threaded MPM).

The PerlChildExitHandler directive should appear in the top-level server configura-
tion file. mod_perl will run all registered PerlChildExitHandler handlers for this
phase until a handler returns something other than Apache::OK or Apache::DECLINED.

In the Book::StartupLog example we used the child_exit() handler:

sub child_exit {
 my($child_pool, $s) = @_;
 say("process $$ now exits");
 return Apache::OK;
}

The child_exit() handler accepts two arguments: the child process pool and the
server object. The example handler logs the PID of the child process in which it’s run
and returns.

,ch25.26428 Page 719 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

720 | Chapter 25: Programming for mod_perl 2.0

As you saw in the example, this handler is configured by adding the following to
httpd.conf:

PerlOpenLogsHandler Book::StartupLog::child_exit

Connection Phases
Since Apache 2.0 makes it possible to implement protocols other than HTTP, the
connection phases pre_connection, configured with PerlPreConnectionHandler, and
process_connection, configured with PerlProcessConnectionHandler, were added. The
pre_connection phase is used for runtime adjustments of things for each connec-
tion—for example, mod_ssl uses the pre_connection phase to add the SSL filters if
SSLEngine On is configured, regardless of whether the protocol is HTTP, FTP, NNTP,
etc. The process_connection phase is used to implement various protocols, usually
those similar to HTTP. The HTTP protocol itself is handled like any other protocol;
internally it runs the request handlers similar to Apache 1.3.

When a connection is issued by a client, it’s first run through the PerlPreConnection-
Handler and then passed to the PerlProcessConnectionHandler, which generates the
response. When PerlProcessConnectionHandler is reading data from the client, it can
be filtered by connection input filters. The generated response can also be filtered
though connection output filters. Filters are usually used for modifying the data
flowing though them, but they can be used for other purposes as well (e.g., logging
interesting information). Figure 25-2 depicts the connection cycle and the data flow
and highlights which handlers are available to mod_perl 2.0.

Now let’s discuss the PerlPreConnectionHandler and PerlProcessConnectionHandler
handlers in detail.

PerlPreConnectionHandler

The pre_connection phase happens just after the server accepts the connection, but
before it is handed off to a protocol module to be served. It gives modules an oppor-
tunity to modify the connection as soon as possible and insert filters if needed. The
core server uses this phase to set up the connection record based on the type of con-
nection that is being used. mod_perl itself uses this phase to register the connection
input and output filters.

In mod_perl 1.0, during code development Apache::Reload was used to automati-
cally reload Perl modules modified since the last request. It was invoked during post_
read_request, the first HTTP request’s phase. In mod_perl 2.0, pre_connection is the
earliest phase, so if we want to make sure that all modified Perl modules are reloaded
for any protocols and their phases, it’s best to set the scope of the Perl interpreter to
the lifetime of the connection via:

PerlInterpScope connection

,ch25.26428 Page 720 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

New Apache Phases and Corresponding Perl*Handlers | 721

and invoke the Apache::Reload handler during the pre_connection phase. However,
this development-time advantage can become a disadvantage in production—for
example, if a connection handled by the HTTP protocol is configured as KeepAlive
and there are several requests coming on the same connection (one handled by mod_
perl and the others by the default image handler), the Perl interpreter won’t be avail-
able to other threads while the images are being served.

Apache will continue executing all handlers registered for this phase until the first
handler returns something other than Apache::OK or Apache::DECLINED.

The PerlPreConnectionHandler directive may appear in the main configuration files
and within <VirtualHost> sections.

A pre_connection handler accepts a connection record and a socket object as its argu-
ments:

sub handler {
 my ($c, $socket) = @_;
 # ...
 return Apache::OK;
}

Figure 25-2. Apache 2.0 connection cycle

Client

PreConnection ProcessConnection

Connection

Input

Filters

Connection

Output

Filters

Request Response

,ch25.26428 Page 721 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

722 | Chapter 25: Programming for mod_perl 2.0

PerlProcessConnectionHandler

The process_connection phase is used to process incoming connections. Only proto-
col modules should assign handlers for this phase, as it gives them an opportunity to
replace the standard HTTP processing with processing for some other protocol (e.g.,
POP3, FTP, etc.).

Apache will continue executing all handlers registered for this phase until the first
handler returns something other than Apache::DECLINED.

The PerlProcessConnectionHandler directive may appear in the main configuration
files and within <VirtualHost> sections.

The process_connection handler can be written in two ways. The first way is to
manipulate bucket brigades, in a way very similar to the filters. The second, simpler
way is to bypass all the filters and to read from and write to the connection socket
directly.

A process_connection handler accepts a connection record object as its only argu-
ment:

sub handler {
 my ($c) = @_;
 # ...
 return Apache::OK;
}

Now let’s look at two examples of connection handlers. The first uses the connec-
tion socket to read and write the data, and the second uses bucket brigades to
accomplish the same thing and allow the connection filters to do their work.

Socket-based protocol module. To demonstrate the workings of a protocol module,
we’ll take a look at the Book::Eliza module, which sends the data read from the cli-
ent as input to Chatbot::Eliza, which in turn implements a mock Rogerian psycho-
therapist and forwards the response from the psychotherapist back to the client. In
this module we will use the implementation that works directly with the connection
socket and therefore bypasses any connection filters.

A protocol handler is configured using the PerlProcessConnectionHandler directive,
and we will use the Listen and <VirtualHost> directives to bind to the nonstandard
port 8084:

Listen 8084
<VirtualHost _default_:8084>
 PerlModule Book::Eliza
 PerlProcessConnectionHandler Book::Eliza
</VirtualHost>

Book::Eliza is then enabled when starting Apache:

panic% httpd

,ch25.26428 Page 722 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

New Apache Phases and Corresponding Perl*Handlers | 723

And we give it a whirl:

panic% telnet localhost 8084
Trying 127.0.0.1...
Connected to localhost (127.0.0.1).
Escape character is '^]'.
Hello Eliza
How do you do. Please state your problem.

How are you?
Oh, I?

Why do I have core dumped?
You say Why do you have core dumped?

I feel like writing some tests today, you?
I'm not sure I understand you fully.

Good bye, Eliza
Does talking about this bother you?

Connection closed by foreign host.

The code is shown in Example 25-3.

Example 25-3. Book/Eliza.pm

package Book::Eliza;

use strict;
use warnings FATAL => 'all';

use Apache::Connection ();
use APR::Socket ();

require Chatbot::Eliza;

use Apache::Const -compile => 'OK';

use constant BUFF_LEN => 1024;

my $eliza = new Chatbot::Eliza;

sub handler {
 my $c = shift;
 my $socket = $c->client_socket;

 my $buff;
 my $last = 0;
 while (1) {
 my($rlen, $wlen);
 $rlen = BUFF_LEN;
 $socket->recv($buff, $rlen);
 last if $rlen <= 0;

,ch25.26428 Page 723 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

724 | Chapter 25: Programming for mod_perl 2.0

The example handler starts with the standard package declaration and, of course, use
strict;. As with all Perl*Handlers, the subroutine name defaults to handler. How-
ever, in the case of a protocol handler, the first argument is not a request_rec, but a
conn_rec blessed into the Apache::Connection class. We have direct access to the cli-
ent socket via Apache::Connection’s client_socket() method, which returns an
object blessed into the APR::Socket class.

Inside the read/send loop, the handler attempts to read BUFF_LEN bytes from the cli-
ent socket into the $buff buffer. The $rlen parameter will be set to the number of
bytes actually read. The APR::Socket::recv() method returns an APR status value,
but we need only check the read length to break out of the loop if it is less than or
equal to 0 bytes. The handler also breaks the loop after processing an input includ-
ing the “good bye” string.

Otherwise, if the handler receives some data, it sends this data to the $eliza object
(which represents the psychotherapist), whose returned text is then sent back to the
client with the APR::Socket::send() method. When the read/print loop is finished
the handler returns Apache::OK, telling Apache to terminate the connection. As men-
tioned earlier, since this handler is working directly with the connection socket, no
filters can be applied.

Bucket brigade–based protocol module. Now let’s look at the same module, but this time
implemented by manipulating bucket brigades. It runs its output through a connec-
tion output filter that turns all uppercase characters into their lowercase equivalents.

The following configuration defines a <VirtualHost> listening on port 8085 that
enables the Book::Eliza2 connection handler, which will run its output through the
Book::Eliza2::lowercase_filter filter:

Listen 8085
<VirtualHost _default_:8085>
 PerlModule Book::Eliza2
 PerlProcessConnectionHandler Book::Eliza2
 PerlOutputFilterHandler Book::Eliza2::lowercase_filter
</VirtualHost>

 # \r is sent instead of \n if the client is talking over telnet
 $buff =~ s/[\r\n]*$//;
 $last++ if $buff =~ /good bye/i;
 $buff = $eliza->transform($buff) . "\n\n";
 $socket->send($buff, length $buff);
 last if $last;
 }

 Apache::OK;
}
1;

Example 25-3. Book/Eliza.pm (continued)

,ch25.26428 Page 724 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

New Apache Phases and Corresponding Perl*Handlers | 725

As before, we start the httpd server:

panic% httpd

and try the new connection handler in action:

panic% telnet localhost 8085
Trying 127.0.0.1...
Connected to localhost.localdomain (127.0.0.1).
Escape character is '^]'.
Hello Eliza!
hi. what seems to be your problem?

Problem? I don't have any problems ;)
does that trouble you?

Not at all, I don't like problems.
i'm not sure i understand you fully.

I said that I don't like problems.
that is interesting. please continue.

You are boring :(
does it please you to believe i am boring?

Yes, yes!
please tell me some more about this.

Good bye!
i'm not sure i understand you fully.

Connection closed by foreign host.

As you can see, the response, which normally is a mix of upper- and lowercase
words, now is all in lowercase, because of the output filter. The implementation of
the connection and the filter handlers is shown in Example 25-4.

Example 25-4. Book/Eliza2.pm

package Book::Eliza2;

use strict;
use warnings FATAL => 'all';

use Apache::Connection ();
use APR::Bucket ();
use APR::Brigade ();
use APR::Util ();

require Chatbot::Eliza;

use APR::Const -compile => qw(SUCCESS EOF);
use Apache::Const -compile => qw(OK MODE_GETLINE);

my $eliza = new Chatbot::Eliza;

,ch25.26428 Page 725 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

726 | Chapter 25: Programming for mod_perl 2.0

sub handler {
 my $c = shift;

 my $bb_in = APR::Brigade->new($c->pool, $c->bucket_alloc);
 my $bb_out = APR::Brigade->new($c->pool, $c->bucket_alloc);
 my $last = 0;

 while (1) {
 my $rv = $c->input_filters->get_brigade($bb_in,
 Apache::MODE_GETLINE);

 if ($rv != APR::SUCCESS or $bb_in->empty) {
 my $error = APR::strerror($rv);
 unless ($rv = = APR::EOF) {
 warn "[eliza] get_brigade: $error\n";
 }
 $bb_in->destroy;
 last;
 }

 while (!$bb_in->empty) {
 my $bucket = $bb_in->first;

 $bucket->remove;

 if ($bucket->is_eos) {
 $bb_out->insert_tail($bucket);
 last;
 }

 my $data;
 my $status = $bucket->read($data);
 return $status unless $status = = APR::SUCCESS;

 if ($data) {
 $data =~ s/[\r\n]*$//;
 $last++ if $data =~ /good bye/i;
 $data = $eliza->transform($data) . "\n\n";
 $bucket = APR::Bucket->new($data);
 }

 $bb_out->insert_tail($bucket);
 }

 my $b = APR::Bucket::flush_create($c->bucket_alloc);
 $bb_out->insert_tail($b);
 $c->output_filters->pass_brigade($bb_out);
 last if $last;
 }

 Apache::OK;
}

Example 25-4. Book/Eliza2.pm (continued)

,ch25.26428 Page 726 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

New Apache Phases and Corresponding Perl*Handlers | 727

For the purpose of explaining how this connection handler works, we are going to
simplify the handler. The whole handler can be represented by the following
pseudocode:

while ($bb_in = get_brigade()) {
 while ($bucket_in = $bb_in->get_bucket()) {
 my $data = $bucket_in->read();
 $data = transform($data);
 $bucket_out = new_bucket($data);

 $bb_out->insert_tail($bucket_out);
 }
 $bb_out->insert_tail($flush_bucket);
 pass_brigade($bb_out);
}

The handler receives the incoming data via bucket bridages, one at a time, in a loop.
It then processes each brigade, by retrieving the buckets contained in it, reading in
the data, transforming that data, creating new buckets using the transformed data,
and attaching them to the outgoing brigade. When all the buckets from the incom-
ing bucket brigade are transformed and attached to the outgoing bucket brigade, a
flush bucket is created and added as the last bucket, so when the outgoing bucket
brigade is passed out to the outgoing connection filters, it will be sent to the client
right away, not buffered.

If you look at the complete handler, the loop is terminated when one of the follow-
ing conditions occurs: an error happens, the end-of-stream bucket has been seen (i.e.,
there’s no more input at the connection), or the received data contains the string
“good bye”. As you saw in the demonstration, we used the string “good bye” to ter-
minate our shrink’s session.

We will skip the filter discussion here, since we are going to talk in depth about fil-
ters in the following sections. All you need to know at this stage is that the data sent
from the connection handler is filtered by the outgoing filter, which transforms it to
be all lowercase.

use base qw(Apache::Filter);
use constant BUFF_LEN => 1024;

sub lowercase_filter : FilterConnectionHandler {
 my $filter = shift;

 while ($filter->read(my $buffer, BUFF_LEN)) {
 $filter->print(lc $buffer);
 }

 return Apache::OK;
}

1;

Example 25-4. Book/Eliza2.pm (continued)

,ch25.26428 Page 727 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

728 | Chapter 25: Programming for mod_perl 2.0

HTTP Request Phases
The HTTP request phases themselves have not changed from mod_perl 1.0, except
the PerlHandler directive has been renamed PerlResponseHandler to better match the
corresponding Apache phase name (response).

The only difference is that now it’s possible to register HTTP request input and out-
put filters, so PerlResponseHandler will filter its input and output through them.
Figure 25-3 depicts the HTTP request cycle, which should be familiar to mod_perl 1.0
users, with the new addition of the request filters. From the diagram you can also see
that the request filters are stacked on top of the connection filters. The request input
filters filter only a request body, and the request output filters filter only a response
body. Request and response headers can be accessed and modified using the $r->
headers_in, $r->headers_out, and other methods.

I/O Filtering
Now let’s talk about a totally new feature of mod_perl 2.0: input/output filtering.

Figure 25-3. mod_perl 2.0 HTTP request cycle

Log

Cleanup

RESPONSE

HeaderParser

Access

Authen

Authz

Type

Fixup

documentConnection
input
filters

Request
input
filters

Request
output
filters

Connection
output
filters

HTTP
request cycle

Wait

PostReadRequest

Trans

,ch25.26428 Page 728 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

I/O Filtering | 729

As of this writing the mod_perl filtering API hasn’t been finalized, and it’s possible
that it will change by the time the production version of mod_perl 2.0 is released.
However, most concepts presented here won’t change, and you should find the dis-
cussion and the examples useful for understanding how filters work. For the most
up-to-date documentation, refer to http://perl.apache.org/docs/2.0/user/handlers/
filters.html.

I/O Filtering Concepts
Before introducing the mod_perl filtering API, there are several important concepts
to understand.

Two methods for manipulating data

As discussed in the last chapter, Apache 2.0 considers all incoming and outgoing
data as chunks of information, disregarding their kind and source or storage meth-
ods. These data chunks are stored in buckets, which form bucket brigades. Input and
output filters massage the data in the bucket brigades.

mod_perl 2.0 filters can directly manipulate the bucket brigades or use the simpli-
fied streaming interface, where the filter object acts like a file handle, which can be
read from and printed to.

Even though you don’t have to work with bucket brigades directly, since you can
write filters using the simplified, streaming filter interface (which works with bucket
brigades behind the scenes), it’s still important to understand bucket brigades. For
example, you need to know that an output filter will be invoked as many times as the
number of bucket brigades sent from an upstream filter or a content handler, and
that the end-of-stream indicator (EOS) is sometimes sent in a separate bucket bri-
gade, so it shouldn’t be a surprise if the filter is invoked even though no real data
went through.

You will also need to understand how to manipulate bucket brigades if you plan to
implement protocol modules, as you have seen earlier in this chapter.

HTTP request versus connection filters

HTTP request filters are applied when Apache serves an HTTP request.

HTTP request input filters get invoked on the body of the HTTP request only if the
body is consumed by the content handler. HTTP request headers are not passed
through the HTTP request input filters.

HTTP response output filters get invoked on the body of the HTTP response, if the
content handler has generated one. HTTP response headers are not passed through
the HTTP response output filters.

,ch25.26428 Page 729 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

730 | Chapter 25: Programming for mod_perl 2.0

Connection-level filters are applied at the connection level.

A connection may be configured to serve one or more HTTP requests, or handle
other protocols. Connection filters see all the incoming and outgoing data. If an
HTTP request is served, connection filters can modify the HTTP headers and the
body of the request and response. Of course, if a different protocol is served over the
connection (e.g., IMAP), the data could have a completely different pattern than the
HTTP protocol (headers and body).

Apache supports several other filter types that mod_perl 2.0 may support in the
future.

Multiple invocations of filter handlers

Unlike other Apache handlers, filter handlers may get invoked more than once dur-
ing the same request. Filters get invoked as many times as the number of bucket bri-
gades sent from the upstream filter or content provider.

For example, if a content-generation handler sends a string, and then forces a flush,
following with more data:

assuming buffered STDOUT ($|= =0)
$r->print("foo");
$r->rflush;
$r->print("bar");

Apache will generate one bucket brigade with two buckets (there are several types of
buckets that contain data—one of them is transient):

bucket type data

1st transient foo
2nd flush

and send it to the filter chain. Then, assuming that no more data was sent after
print("bar"), it will create a last bucket brigade containing data:

bucket type data

1st transient bar

and send it to the filter chain. Finally it’ll send yet another bucket brigade with the
EOS bucket indicating that no more will be data sent:

bucket type data

1st eos

In our example the filter will be invoked three times. Notice that sometimes the EOS
bucket comes attached to the last bucket brigade with data and sometimes in its own
bucket brigade. This should be transparent to the filter logic, as we will see shortly.

,ch25.26428 Page 730 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

I/O Filtering | 731

A user may install an upstream filter, and that filter may decide to insert extra bucket
brigades or collect all the data in all bucket brigades passing through it and send it all
down in one brigade. What’s important to remember when coding a filter is to never
assume that the filter is always going to be invoked once, or a fixed number of times.
You can’t make assumptions about the way the data is going to come in. Therefore, a
typical filter handler may need to split its logic into three parts, as depicted in
Figure 25-4.

Jumping ahead, we will show some pseudocode that represents all three parts. This
is what a typical filter looks like:

sub handler {
 my $filter = shift;

 # runs on first invocation
 unless ($filter->ctx) {
 init($filter);
 $filter->ctx(1);
 }

 # runs on all invocations
 process($filter);

 # runs on the last invocation
 if ($filter->seen_eos) {
 finalize($filter);
 }

 return Apache::OK;
}
sub init { ... }
sub process { ... }
sub finalize { ... }

Figure 25-4. mod_perl 2.0 filter logic

Init

Read
Modify

Print

Read
Modify

Print

Read
Modify

Print

Read
Modify

Print

Cleanup

. . .

. . .

1st 2nd N-1 Last time

. . .

,ch25.26428 Page 731 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

732 | Chapter 25: Programming for mod_perl 2.0

Let’s examine the parts of this pseudofilter:

1. Initialization

During the initialization, the filter runs all the code that should be performed
only once across multiple invocations of the filter (during a single request). The
filter context is used to accomplish this task. For each new request, the filter
context is created before the filter is called for the first time, and it’s destroyed at
the end of the request. When the filter is invoked for the first time, $filter->ctx
returns undef and the custom function init() is called:

unless ($filter->ctx) {
 init($filter);
 $filter->ctx(1);
}

This function can, for example, retrieve some configuration data set in httpd.conf
or initialize some data structure to its default value. To make sure that init()
won’t be called on the following invocations, we must set the filter context
before the first invocation is completed:

$filter->ctx(1);

In practice, the context is not just served as a flag, but used to store real data.
For example, the following filter handler counts the number of times it was
invoked during a single request:

sub handler {
 my $filter = shift;

 my $ctx = $filter->ctx;
 $ctx->{invoked}++;
 $filter->ctx($ctx);
 warn "filter was invoked $ctx->{invoked} times\n";

 return Apache::DECLINED;
}

Since this filter handler doesn’t consume the data from the upstream filter, it’s
important that this handler returns Apache::DECLINED, so that mod_perl will pass
the bucket brigades to the next filter. If this handler returns Apache::OK, the data
will simply be lost.

2. Processing

The next part:
process($filter);

is unconditionally invoked on every filter invocation. This is where the incom-
ing data is read, modified, and sent out to the next filter in the filter chain. Here
is an example that lowers the case of the characters passing through:

use constant READ_SIZE => 1024;
sub process {
 my $filter = shift;
 while ($filter->read(my $data, READ_SIZE)) {

,ch25.26428 Page 732 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

I/O Filtering | 733

 $filter->print(lc $data);
 }
}

Here the filter operates on only a single bucket brigade. Since it manipulates
every character separately, the logic is really simple.

In more complicated filters, the filters may need to buffer data first before the
transformation can be applied. For example, if the filter operates on HTML
tokens (e.g.,), it’s possible that one brigade will include the
beginning of the token ()
will come in the next bucket brigade (on the next filter invocation). In certain
cases it may involve more than two bucket brigades to get the whole token, and
the filter will have to store the remainder of the unprocessed data in the filter
context and then reuse it in the next invocation. Another good example is a fil-
ter that performs data compression (compression usually is effective only when
applied to relatively big chunks of data)—if a single bucket brigade doesn’t con-
tain enough data, the filter may need to buffer the data in the filter context until
it collects enough of it.

1. Finalization

Finally, some filters need to know when they are invoked for the last time, in
order to perform various cleanups and/or flush any remaining data. As men-
tioned earlier, Apache indicates this event by a special end-of-stream token, rep-
resented by a bucket of type EOS. If the filter is using the streaming interface,
rather than manipulating the bucket brigades directly, it can check whether this
is the last time it’s invoked using the $filter->seen_eos method:

if ($filter->seen_eos) {
 finalize($filter);
}

This check should be done at the end of the filter handler, because sometimes
the EOS token comes attached to the tail of data (the last invocation gets both
the data and the EOS token) and sometimes it comes all alone (the last invoca-
tion gets only the EOS token). So if this test is performed at the beginning of the
handler and the EOS bucket was sent in together with the data, the EOS event
may be missed and the filter won’t function properly.

Filters that directly manipulate bucket brigades have to look for a bucket whose
type is EOS for the same reason.

Some filters may need to deploy all three parts of the described logic. Others will
need to do only initialization and processing, or processing and finalization, while
the simplest filters might perform only the normal processing (as we saw in the
example of the filter handler that lowers the case of the characters going through it).

,ch25.26428 Page 733 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

734 | Chapter 25: Programming for mod_perl 2.0

Blocking calls

All filters (excluding the core filter that reads from the network and the core filter
that writes to it) block at least once when invoked. Depending on whether it’s an
input or an output filter, the blocking happens when the bucket brigade is requested
from the upstream filter or when the bucket brigade is passed to the next filter.

Input and output filters differ in the ways they acquire the bucket brigades (which
include the data that they filter). Although the difference can’t be seen when a
streaming API is used, it’s important to understand how things work underneath.

When an input filter is invoked, it first asks the upstream filter for the next bucket
brigade (using the get_brigade() call). That upstream filter in turn asks for the
bucket brigade from the next upstream filter in the chain, and so on, until the last fil-
ter that reads from the network (called core_in) is reached. The core_in filter reads,
using a socket, a portion of the incoming data from the network, processes it, and
sends it to its downstream filter, which processes the data and sends it to its down-
stream filter, and so on, until it reaches the very first filter that asked for the data. (In
reality, some other handler triggers the request for the bucket brigade (e.g., the
HTTP response handler or a protocol module), but for our discussion it’s good
enough to assume that it’s the first filter that issues the get_brigade() call.)

Figure 25-5 depicts a typical input filter chain data flow, in addition to the program
control flow. The arrows show when the control is switched from one filter to
another, and the black-headed arrows show the actual data flow. The diagram
includes some pseudocode, both in Perl for the mod_perl filters and in C for the
internal Apache filters. You don’t have to understand C to understand this diagram.
What’s important to understand is that when input filters are invoked they first call
each other via the get_brigade() call and then block (notice the brick walls in the
diagram), waiting for the call to return. When this call returns, all upstream filters
have already completed their filtering tasks.

Figure 25-5. mod_perl 2.0 input filter program control and data flow

modperl_filter

sub handler {
 my($f, $bb_out) = @_;
 get_brigade($bb_in);

 $bb_out=modify($bb_in);
 return Apache::OK;
}

. . .

http_in

http_input_filter(*bb_out)
{
 get_brigade(bb_in);

 *bb_out = modify(bb_in);
 return OK;
}

. . .

core_in

core_input_filter(*bb_out)
{
 bb_out = apr_brigade_create;
 read(socket, bb_out size);
 return OK;
}

Network

,ch25.26428 Page 734 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

I/O Filtering | 735

As mentioned earlier, the streaming interface hides these details; however, the first
call to $filter->read() will block, as underneath it performs the get_brigade() call.

Figure 25-5 shows a part of the actual input filter chain for an HTTP request. The ...
shows that there are more filters in between the mod_perl filter and http_in.

Now let’s look at what happens in the output filter chain. The first filter acquires the
bucket brigades containing the response data from the content handler (or another
protocol handler if we aren’t talking HTTP), then it applies any modifications and
passes the data to the next filter (using the pass_brigade() call), which in turn
applies its modifications and sends the bucket brigade to the next filter, and so on,
all the way down to the last filter (called core), which writes the data to the network,
via the socket to which the client is listening. Even though the output filters don’t
have to wait to acquire the bucket brigade (since the upstream filter passes it to them
as an argument), they still block in a similar fashion to input filters, because they
have to wait for the pass_brigade() call to return.

Figure 25-6 depicts a typical output filter chain data flow in addition to the program
control flow. As in the input filter chain diagram, the arrows show the program con-
trol flow, and the black-headed arrows show the data flow. Again, the diagram uses
Perl pseudocode for the mod_perl filter and C pseudocode for the Apache filters, and
the brick walls represent the blocking. The diagram shows only part of the real
HTTP response filter chain; ... stands for the omitted filters.

Filter Configuration
HTTP request filter handlers are declared using the FilterRequestHandler attribute.
Consider the following request input and output filter skeletons:

package Book::FilterRequestFoo;
use base qw(Apache::Filter);

Figure 25-6. mod_perl 2.0 output filter program control and data flow

modperl_filter

sub handler {
 my($f, $bb) = @_;
 get_brigade($bb);
 pass_brigade ($bb);

 return Apache::OK;
}

. . .

http_header

http_header_filter(*bb)
{
 get_brigade(bb);
 pass_brigade(bb);

 return OK;
}

. . .

core

core_output_filter(*bb)
{
 write(socket, bb, size);
 return OK;
}

Network

,ch25.26428 Page 735 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

736 | Chapter 25: Programming for mod_perl 2.0

sub input : FilterRequestHandler {
 my($filter, $bb, $mode, $block, $readbytes) = @_;
 #...
}

sub output : FilterRequestHandler {
 my($filter, $bb) = @_;
 #...
}

1;

If the attribute is not specified, the default FilterRequestHandler attribute is
assumed. Filters specifying subroutine attributes must subclass Apache::Filter.

The request filters are usually configured in the <Location> or equivalent sections:

PerlModule Book::FilterRequestFoo
PerlModule Book::NiceResponse
<Location /filter_foo>
 SetHandler modperl
 PerlResponseHandler Book::NiceResponse
 PerlInputFilterHandler Book::FilterRequestFoo::input
 PerlOutputFilterHandler Book::FilterRequestFoo::output
</Location>

Now we have the request input and output filters configured.

The connection filter handler uses the FilterConnectionHandler attribute. Here is a
similar example for the connection input and output filters:

package Book::FilterConnectionBar;
use base qw(Apache::Filter);

sub input : FilterConnectionHandler {
 my($filter, $bb, $mode, $block, $readbytes) = @_;
 #...
}

sub output : FilterConnectionHandler {
 my($filter, $bb) = @_;
 #...
}

1;

This time the configuration must be done outside the <Location> or equivalent sec-
tions, usually within the <VirtualHost> section or the global server configuration:

Listen 8005
<VirtualHost _default_:8005>
 PerlModule Book::FilterConnectionBar
 PerlModule Book::NiceResponse

 PerlInputFilterHandler Book::FilterConnectionBar::input
 PerlOutputFilterHandler Book::FilterConnectionBar::output

,ch25.26428 Page 736 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

I/O Filtering | 737

 <Location />
 SetHandler modperl
 PerlResponseHandler Book::NiceResponse
 </Location>

</VirtualHost>

This accomplishes the configuration of the connection input and output filters.

Input Filters
We looked at how input filters call each other in Figure 25-5. Now let’s look at some
examples of input filters.

Bucket brigade–based connection input filter

Let’s say that we want to test how our handlers behave when they are requested as
HEAD requests rather than GET requests. We can alter the request headers at the
incoming connection level transparently to all handlers.

This example’s filter handler looks for data like:

GET /perl/test.pl HTTP/1.1

and turns it into:

HEAD /perl/test.pl HTTP/1.1

The input filter handler that does that by directly manipulating the bucket brigades is
shown in Example 25-5.

Example 25-5. Book/InputFilterGET2HEAD.pm

package Book::InputFilterGET2HEAD;

use strict;
use warnings;

use base qw(Apache::Filter);

use APR::Brigade ();
use APR::Bucket ();

use Apache::Const -compile => 'OK';
use APR::Const -compile => ':common';

sub handler : FilterConnectionHandler {
 my($filter, $bb, $mode, $block, $readbytes) = @_;

 return Apache::DECLINED if $filter->ctx;

 my $rv = $filter->next->get_brigade($bb, $mode, $block, $readbytes);
 return $rv unless $rv = = APR::SUCCESS;

,ch25.26428 Page 737 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

738 | Chapter 25: Programming for mod_perl 2.0

The filter handler is called for each bucket brigade, which in turn includes buckets
with data. The basic task of any input filter handler is to request the bucket brigade
from the upstream filter, and return it to the downstream filter using the second
argument, $bb. It’s important to remember that you can call methods on this argu-
ment, but you shouldn’t assign to this argument, or the chain will be broken. You
have two techniques to choose from to retrieve, modify, and return bucket brigades:

• Create a new, empty bucket brigade, $ctx_bb, pass it to the upstream filter via
get_brigade(), and wait for this call to return. When it returns, $ctx_bb is popu-
lated with buckets. Now the filter should move the bucket from $ctx_bb to $bb,
on the way modifying the buckets if needed. Once the buckets are moved, and
the filter returns, the downstream filter will receive the populated bucket bri-
gade.

• Pass $bb to get_brigade() to the upstream filter, so it will be populated with
buckets. Once get_brigade() returns, the filter can go through the buckets and
modify them in place, or it can do nothing and just return (in which case, the
downstream filter will receive the bucket brigade unmodified).

Both techniques allow addition and removal of buckets, alhough the second tech-
nique is more efficient since it doesn’t have the overhead of creating the new brigade
and moving the bucket from one brigade to another. In this example we have chosen
to use the second technique; in the next example we will see the first technique.

Our filter has to perform the substitution of only one HTTP header (which normally
resides in one bucket), so we have to make sure that no other data gets mangled (e.g.,
there could be POSTed data that may match /^GET/ in one of the buckets). We use
$filter->ctx as a flag here. When it’s undefined, the filter knows that it hasn’t done
the required substitution; once it completes the job, it sets the context to 1.

 for (my $b = $bb->first; $b; $b = $bb->next($b)) {
 my $data;
 my $status = $b->read($data);
 return $status unless $status = = APR::SUCCESS;
 warn("data: $data\n");

 if ($data and $data =~ s|^GET|HEAD|) {
 my $bn = APR::Bucket->new($data);
 $b->insert_after($bn);
 $b->remove; # no longer needed
 $filter->ctx(1); # flag that that we have done the job
 last;
 }
 }

 Apache::OK;
}
1;

Example 25-5. Book/InputFilterGET2HEAD.pm (continued)

,ch25.26428 Page 738 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

I/O Filtering | 739

To optimize the speed, the filter immediately returns Apache::DECLINED when it’s
invoked after the substitution job has been done:

return Apache::DECLINED if $filter->ctx;

mod_perl then calls get_brigade() internally, which passes the bucket brigade to the
downstream filter. Alternatively, the filter could do:

my $rv = $filter->next->get_brigade($bb, $mode, $block, $readbytes);
return $rv unless $rv = = APR::SUCCESS;
return Apache::OK if $filter->ctx;

but this is a bit less efficient.

If the job hasn’t yet been done, the filter calls get_brigade(), which populates the
$bb bucket brigade. Next, the filter steps through the buckets, looking for the bucket
that matches the regex /^GET/. If it finds it, a new bucket is created with the modi-
fied data s/^GET/HEAD/, and that bucket is inserted in place of the old bucket. In our
example, we insert the new bucket after the bucket that we have just modified and
immediately remove the bucket that we don’t need any more:

$b->insert_after($bn);
$b->remove; # no longer needed

Finally, we set the context to 1, so we know not to apply the substitution on the fol-
lowing data and break from the for loop.

The handler returns Apache::OK, indicating that everything was fine. The down-
stream filter will receive the bucket brigade with one bucket modified.

Now let’s check that the handler works properly. Consider the response handler
shown in Example 25-6.

Example 25-6. Book/RequestType.pm

package Book::RequestType;

use strict;
use warnings;

use Apache::RequestIO ();
use Apache::RequestRec ();
use Apache::Response ();

use Apache::Const -compile => 'OK';

sub handler {
 my $r = shift;

 $r->content_type('text/plain');
 my $response = "the request type was " . $r->method;
 $r->set_content_length(length $response);
 $r->print($response);

,ch25.26428 Page 739 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

740 | Chapter 25: Programming for mod_perl 2.0

This handler returns to the client the request type it has issued. In the case of the
HEAD request, Apache will discard the response body, but it will still set the correct
Content-Length header, which will be 24 in case of a GET request and 25 for HEAD.
Therefore, if this response handler is configured as:

Listen 8005
<VirtualHost _default_:8005>
 <Location />
 SetHandler modperl
 PerlResponseHandler +Book::RequestType
 </Location>
</VirtualHost>

and a GET request is issued to /:

panic% perl -MLWP::UserAgent -le \
'$r = LWP::UserAgent->new()->get("http://localhost:8005/"); \
print $r->headers->content_length . ": ". $r->content'
24: the request type was GET

the response’s body is:

the request type was GET

and the Content-Length header is set to 24.

However, if we enable the Book::InputFilterGET2HEAD input connection filter:

Listen 8005
<VirtualHost _default_:8005>
 PerlInputFilterHandler +Book::InputFilterGET2HEAD

 <Location />
 SetHandler modperl
 PerlResponseHandler +Book::RequestType
 </Location>
</VirtualHost>

and issue the same GET request, we get only:

25:

which means that the body was discarded by Apache, because our filter turned the
GET request into a HEAD request. If Apache wasn’t discarding the body of responses to
HEAD requests, the response would be:

the request type was HEAD

That’s why the content length is reported as 25 and not 24, as in the real GET request.

 Apache::OK;
}

1;

Example 25-6. Book/RequestType.pm (continued)

,ch25.26428 Page 740 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

I/O Filtering | 741

Bucket brigade–based HTTP request input filter

Let’s look at the request input filter that lowers the case of the text in the request’s
body, Book::InputRequestFilterLC (shown in Example 25-7).

Example 25-7. Book/InputRequestFilterLC.pm

package Book::InputRequestFilterLC;

use strict;
use warnings;

use base qw(Apache::Filter);

use Apache::Connection ();
use APR::Brigade ();
use APR::Bucket ();

use Apache::Const -compile => 'OK';
use APR::Const -compile => ':common';

sub handler : FilterRequestHandler {
 my($filter, $bb, $mode, $block, $readbytes) = @_;

 my $c = $filter->c;
 my $bb_ctx = APR::Brigade->new($c->pool, $c->bucket_alloc);
 my $rv = $filter->next->get_brigade($bb_ctx, $mode, $block, $readbytes);
 return $rv unless $rv = = APR::SUCCESS;

 while (!$bb_ctx->empty) {
 my $b = $bb_ctx->first;

 $b->remove;

 if ($b->is_eos) {
 $bb->insert_tail($b);
 last;
 }

 my $data;
 my $status = $b->read($data);
 return $status unless $status = = APR::SUCCESS;

 $b = APR::Bucket->new(lc $data) if $data;

 $bb->insert_tail($b);
 }

 Apache::OK;
}

1;

,ch25.26428 Page 741 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

742 | Chapter 25: Programming for mod_perl 2.0

As promised, in this filter handler we have used the first technique of bucket-brigade
modification. The handler creates a temporary bucket brigade (ctx_bb), populates it
with data using get_brigade(), and then moves buckets from it to the bucket bri-
gade $bb, which is then retrieved by the downstream filter when our handler returns.

This filter doesn’t need to know whether it was invoked for the first time with this
request or whether it has already done something. It’s a stateless handler, since it has
to lowercase everything that passes through it. Notice that this filter can’t be used as
a connection filter for HTTP requests, since it will invalidate the incoming request
headers. For example, the first header line:

GET /perl/TEST.pl HTTP/1.1

will become:

get /perl/test.pl http/1.1

which messes up the request method, the URL, and the protocol.

Now if we use the Book::Dump response handler we developed earlier in this chapter,
which dumps the query string and the content body as a response, and configure the
server as follows:

<Location /lc_input>
 SetHandler modperl
 PerlResponseHandler +Book::Dump
 PerlInputFilterHandler +Book::InputRequestFilterLC
</Location>

when issuing a POST request:

panic% echo "mOd_pErl RuLeS" | POST 'http://localhost:8002/lc_input?FoO=1&BAR=2'

we get a response like this:

args:
FoO=1&BAR=2
content:
mod_perl rules

We can see that our filter lowercased the POSTed body before the content handler
received it, and the query string wasn’t changed.

Stream-based HTTP request input filter

Let’s now look at the same filter implemented using the stream-based filtering API
(see Example 25-8).

Example 25-8. Book/InputRequestFilterLC2.pm

package Book::InputRequestFilterLC2;

use strict;
use warnings;

,ch25.26428 Page 742 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

I/O Filtering | 743

You’ve probably asked yourself why we had to go through the bucket-brigade filters
when all this can be done so much more easily. The reason is that we wanted you to
understand how the filters work underneath, which will help you when you need to
debug filters or optimize their speed. Also, in certain cases a bucket-brigade filter
may be more efficient than a stream-based one. For example, if the filter applies a
transformation to selected buckets, certain buckets may contain open file handles or
pipes, rather than real data. When you call read() the buckets will be forced to read
in that data, but if you don’t want to modify these buckets, you can pass them as
they are and let Apache use a faster technique for sending data from the file handles
or pipes.

The logic is very simple here: the filter reads in a loop and prints the modified data,
which at some point (when the internal mod_perl buffer is full or when the filter
returns) will be sent to the next filter.

read() populates $buffer to a maximum of BUFF_LEN characters (1,024 in our exam-
ple). Assuming that the current bucket brigade contains 2,050 characters, read() will
get the first 1,024 characters, then 1,024 characters more, and finally the remaining
two characters. Notice that even though the response handler may have sent more
than 2,050 characters, every filter invocation operates on a single bucket brigade, so
you have to wait for the next invocation to get more input. In one of the earlier
examples, we showed that you can force the generation of several bucket brigades in
the content handler by using rflush(). For example:

$r->print("string");
$r->rflush();
$r->print("another string");

It’s possible to get more than one bucket brigade from the same filter handler invoca-
tion only if the filter is not using the streaming interface—simply call get_brigade()
as many times as needed or until the EOS token is received.

use base qw(Apache::Filter);

use Apache::Const -compile => 'OK';

use constant BUFF_LEN => 1024;

sub handler : FilterRequestHandler {
 my $filter = shift;

 while ($filter->read(my $buffer, BUFF_LEN)) {
 $filter->print(lc $buffer);
 }

 Apache::OK;
}
1;

Example 25-8. Book/InputRequestFilterLC2.pm (continued)

,ch25.26428 Page 743 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

744 | Chapter 25: Programming for mod_perl 2.0

The configuration section is pretty much identical:

<Location /lc_input2>
 SetHandler modperl
 PerlResponseHandler +Book::Dump
 PerlInputFilterHandler +Book::InputRequestFilterLC2
 </Location>

When issuing a POST request:

% echo "mOd_pErl RuLeS" | POST 'http://localhost:8002/lc_input2?FoO=1&BAR=2'

we get a response like this:

args:
FoO=1&BAR=2
content:
mod_perl rules

Again, we can see that our filter lowercased the POSTed body before the content han-
dler received it. The query string wasn’t changed.

Output Filters
Earlier, in Figure 25-6, we saw how output filters call each other. Now let’s look at
some examples of output filters.

Stream-based HTTP request output filter

The PerlOutputFilterHandler handler registers and configures output filters.

The example of a stream-based output filter that we are going to present is simpler
than the one that directly manipulates bucket brigades, although internally the
stream-based interface is still manipulating the bucket brigades.

Book::FilterROT13 implements the simple Caesar-cypher encryption that replaces
each English letter with the one 13 places forward or back along the alphabet, so that
“mod_perl 2.0 rules!” becomes “zbq_crey 2.0 ehyrf!”. Since the English alphabet
consists of 26 letters, the ROT13 encryption is self-inverse, so the same code can be
used for encoding and decoding. In our example, Book::FilterROT13 reads portions
of the output generated by some previous handler, rotates the characters and sends
them downstream.

The first argument to the filter handler is an Apache::Filter object, which as of this
writing provides two methods, read() and print(). The read() method reads a chunk
of the output stream into the given buffer, returning the number of characters read. An
optional size argument may be given to specify the maximum size to read into the
buffer. If omitted, an arbitrary number of characters (which depends on the size of the

,ch25.26428 Page 744 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

I/O Filtering | 745

bucket brigade sent by the upstream filter or handler) will fill the buffer. The print()
method passes data down to the next filter. This filter is shown in Example 25-9.

Let’s say that we want to encrypt the output of the registry scripts accessed through a
/perl-rot13 location using the ROT13 algorithm. The following configuration section
accomplishes that:

PerlModule Book::FilterROT13
Alias /perl-rot13/ /home/httpd/perl/
<Location /perl-rot13>
 SetHandler perl-script
 PerlResponseHandler ModPerl::Registry
 PerlOutputFilterHandler Book::FilterROT13
 Options +ExecCGI
 #PerlOptions +ParseHeaders
</Location>

Now that you know how to write input and output filters, you can write a pair of fil-
ters that decode ROT13 input before the request processing starts and then encode
the generated response back to ROT13 on the way back to the client.

The request output filter can be used as the connection output filter as well. How-
ever, HTTP headers will then look invalid to standard HTTP user agents. The client
should expect the data to come encoded as ROT13 and decode it before using it.
Writing such a client in Perl should be a trivial task.

Example 25-9. Book/FilterROT13.pm

package Book::FilterROT13;

use strict;

use Apache::RequestRec ();
use Apache::RequestIO ();
use Apache::Filter ();

use Apache::Const -compile => 'OK';

use constant BUFF_LEN => 1024;

sub handler {
 my $filter = shift;

 while ($filter->read(my $buffer, BUFF_LEN)) {
 $buffer =~ tr/A-Za-z/N-ZA-Mn-za-m/;
 $filter->print($buffer);
 }

 return Apache::OK;
}
1;

,ch25.26428 Page 745 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

746 | Chapter 25: Programming for mod_perl 2.0

Another stream-based HTTP request output filter

Let’s look at another example of an HTTP request output filter—but first, let’s
develop a response handler that sends two lines of output: the numerals 1234567890
and the English alphabet in a single string. This handler is shown in Example 25-10.

The purpose of our filter handler is to reverse every line of the response body, pre-
serving the newline characters in their places. Since we want to reverse characters
only in the response body, without breaking the HTTP headers, we will use an
HTTP request output filter.

The first filter implementation (Example 25-11) uses the stream-based filtering API.

Example 25-10. Book/SendAlphaNum.pm

package Book::SendAlphaNum;

use strict;
use warnings;

use Apache::RequestRec ();
use Apache::RequestIO ();

use Apache::Const -compile => qw(OK);

sub handler {
 my $r = shift;

 $r->content_type('text/plain');

 $r->print(1..9, "0\n");
 $r->print('a'..'z', "\n");

 Apache::OK;
}
1;

Example 25-11. Book/FilterReverse1.pm

package Book::FilterReverse1;

use strict;
use warnings;

use base qw(Apache::Filter);

use Apache::Const -compile => qw(OK);

use constant BUFF_LEN => 1024;

sub handler : FilterRequestHandler {
 my $filter = shift;

,ch25.26428 Page 746 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

I/O Filtering | 747

Next, we add the following configuration to httpd.conf:

PerlModule Book::FilterReverse1
PerlModule Book::SendAlphaNum
<Location /reverse1>
 SetHandler modperl
 PerlResponseHandler Book::SendAlphaNum
 PerlOutputFilterHandler Book::FilterReverse1
</Location>

Now when a request to /reverse1 is made, the response handler Book::SendAlphaNum::
handler() sends:

1234567890
abcdefghijklmnopqrstuvwxyz

as a response and the output filter handler Book::FilterReverse1::handler reverses
the lines, so the client gets:

0987654321
zyxwvutsrqponmlkjihgfedcba

The Apache::Filter module loads the read() and print() methods that encapsulate
the stream-based filtering interface.

The reversing filter is quite simple: in the loop it reads the data in the readline()
mode in chunks up to the buffer length (1,024 in our example), then it prints each
line reversed while preserving the newline control characters at the end of each line.
Behind the scenes, $filter->read() retrieves the incoming brigade and gets the data
from it, and $filter->print() appends to the new brigade, which is then sent to the
next filter in the stack. read() breaks the while loop when the brigade is emptied or
the EOS token is received.

So as not to distract the reader from the purpose of the example, we’ve used oversim-
plified code that won’t correctly handle input lines that are longer than 1,024 charac-
ters or use a different line-termination token (it could be “\n”, “\r”, or “\r\n”,
depending on the platform). Moreover, a single line may be split across two or even
more bucket brigades, so we have to store the unprocessed string in the filter con-
text so that it can be used in the following invocations. So here is an example of a
more complete handler, which does takes care of these issues:

 while ($filter->read(my $buffer, BUFF_LEN)) {
 for (split "\n", $buffer) {
 $filter->print(scalar reverse $_);
 $filter->print("\n");
 }
 }

 Apache::OK;
}
1;

Example 25-11. Book/FilterReverse1.pm (continued)

,ch25.26428 Page 747 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

748 | Chapter 25: Programming for mod_perl 2.0

sub handler {
 my $f = shift;

 my $leftover = $f->ctx;
 while ($f->read(my $buffer, BUFF_LEN)) {
 $buffer = $leftover . $buffer if defined $leftover;
 $leftover = undef;
 while ($buffer =~ /([^\r\n]*)([\r\n]*)/g) {
 $leftover = $1, last unless $2;
 $f->print(scalar(reverse $1), $2);
 }
 }

 if ($f->seen_eos) {
 $f->print(scalar reverse $leftover) if defined $leftover;
 }
 else {
 $f->ctx($leftover) if defined $leftover;
 }

 return Apache::OK;
}

The handler uses the $leftover variable to store unprocessed data as long as it fails
to assemble a complete line or there is an incomplete line following the newline
token. On the next handler invocation, this data is then prepended to the next chunk
that is read. When the filter is invoked for the last time, it unconditionally reverses
and flushes any remaining data.

Bucket brigade-based HTTP request output filter

The filter implementation in Example 25-12 uses the bucket brigades API to accom-
plish exactly the same task as the filter in Example 25-11.

Example 25-12. Book/FilterReverse2.pm

package Book::FilterReverse2;

use strict;
use warnings;

use base qw(Apache::Filter);

use APR::Brigade ();
use APR::Bucket ();

use Apache::Const -compile => 'OK';
use APR::Const -compile => ':common';

sub handler : FilterRequestHandler {
 my($filter, $bb) = @_;

,ch25.26428 Page 748 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

I/O Filtering | 749

Here’s the corresponding configuration:

PerlModule Book::FilterReverse2
PerlModule Book::SendAlphaNum
<Location /reverse2>
 SetHandler modperl
 PerlResponseHandler Book::SendAlphaNum
 PerlOutputFilterHandler Book::FilterReverse2
</Location>

Now when a request to /reverse2 is made, the client gets:

0987654321
zyxwvutsrqponmlkjihgfedcba

as expected.

The bucket brigades output filter version is just a bit more complicated than the
stream-based one. The handler receives the incoming bucket brigade $bb as its sec-
ond argument. Because when it is completed, the handler must pass a brigade to the

 my $c = $filter->c;
 my $bb_ctx = APR::Brigade->new($c->pool, $c->bucket_alloc);

 while (!$bb->empty) {
 my $bucket = $bb->first;

 $bucket->remove;

 if ($bucket->is_eos) {
 $bb_ctx->insert_tail($bucket);
 last;
 }

 my $data;
 my $status = $bucket->read($data);
 return $status unless $status = = APR::SUCCESS;

 if ($data) {
 $data = join "",
 map {scalar(reverse $_), "\n"} split "\n", $data;
 $bucket = APR::Bucket->new($data);
 }

 $bb_ctx->insert_tail($bucket);
 }

 my $rv = $filter->next->pass_brigade($bb_ctx);
 return $rv unless $rv = = APR::SUCCESS;

 Apache::OK;
}
1;

Example 25-12. Book/FilterReverse2.pm (continued)

,ch25.26428 Page 749 Thursday, November 18, 2004 12:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

750 | Chapter 25: Programming for mod_perl 2.0

next filter in the stack, we create a new bucket brigade, into which we put the modi-
fied buckets and which eventually we pass to the next filter.

The core of the handler is in removing buckets from the head of the bucket brigade
$bb one at a time, reading the data from each bucket, reversing the data, and then
putting it into a newly created bucket, which is inserted at the end of the new bucket
brigade. If we see a bucket that designates the end of the stream, we insert that
bucket at the tail of the new bucket brigade and break the loop. Finally, we pass the
created brigade with modified data to the next filter and return.

As in the original version of Book::FilterReverse1::handler, this filter is not smart
enough to handle incomplete lines. The trivial exercise of making the filter foolproof
by porting a better matching rule and using the $leftover buffer from the previous
section is left to the reader.

,ch25.26428 Page 750 Thursday, November 18, 2004 12:47 PM

