é ,ch24.25990 Page 685 Thursday, November 18, 2004 12:47 PM

*

CHAPTER 24

mod_perl 2.0: Installation and
Configuration

Since Doug MacFEachern introduced mod_perl 1.0" in 1996, he has had to tweak it
with every change in Apache and Perl, while maintaining compatibility with the
older versions. These rewrites have led to very complex source code, with hundreds
of #ifdefs and workarounds for various incompatibilities in older Perl and Apache
versions.

Apache 2.0, however, is based on a new threads design, requiring that mod_perl be
based on a thread-safe Perl interpreter. Perl 5.6.0 was the first Perl version to sup-
port internal thread-safety across multiple interpreters. Since Perl 5.6.0 and Apache
2.0 are the very minimum requirements for the newest version of mod_perl, back-
ward compatibility was no longer a concern, so this seemed like a good time to start
from scratch. mod_perl 2.0 was the result: a leaner, more efficient mod_perl that’s
streamlined for Apache 2.0.

mod_perl 2.0 includes a mechanism for building the Perl interface to the Apache API
automatically, allowing us to easily adjust mod_perl 2.0 to the ever-changing Apache
2.0 API during its development period. Another important feature is the Apache::
Test framework, which was originally developed for mod_perl 2.0 but then was
adopted by Apache 2.0 developers to test the core server features and third-party
modules. Moreover the tests written using the Apache: :Test framework could be run
with Apache 1.0 and 2.0, assuming that both supported the same features.

Many other interesting changes have already happened to mod_perl in Version 2.0,
and more will be developed in the future. Some of these will be covered in this chap-
ter, and some you will discover on your own while reading mod_perl documentation.

At the time of this writing, mod_perl 2.0 is considered beta when used with the pre-
fork Multi-Processing Model module (MPM) and alpha when used with a threaded

* Here and in the rest of this and the next chapter we refer to the mod_perl 1.x series as mod_perl 1.0 and to
2.0.x as mod_perl 2.0 to keep things simple. Similarly, we call the Apache 1.3.x series Apache 1.3 and the 2.
0.x series Apache 2.0.

685

4~ 4

*@%

é ,ch24.25990 Page 686 Thursday, November 18, 2004 12:47 PM

*

.

MPM. It is likely that Perl 5.8.0+ will be required for mod_perl 2.0 to move past
alpha with threaded MPMs. Also, the Apache 2.0 API hasn’t yet been finalized, so
it’s possible that certain examples in this chapter may require modifications once
production versions of Apache 2.0 and mod_perl 2.0 are released.

In this chapter, we’ll first discuss the new features in Apache 2.0, Perl 5.6 and later,
and mod_perl 2.0 (in that order). Then we’ll cover the installation and configuration
of mod_perl 2.0. Details on the new functionality implemented in mod_perl 2.0 are
provided in Chapter 25.

What’s New in Apache 2.0

Whereas Apache 1.2 and 1.3 were based on the NCSA httpd code base, Apache 2.0
rewrote big chunks of the 1.3 code base, mainly to support numerous new features
and enhancements. Here are the most important new features:

Apache Portable Runtime (APR)

The APR presents a standard API for writing portable client and server applica-
tions, covering file I/O, logging, shared memory, threads, managing child pro-
cesses, and many other functionalities needed for developing the Apache core
and third-party modules in a portable and efficient way. One important effect is
that it significantly simplifies the code that uses the APR, making it much easier
to review and understand the Apache code, and increasing the number of
revealed bugs and contributed patches.

The APR uses the concept of memory pools, which significantly simplifies the
memory-management code and reduces the possibility of memory leaks (which
always haunt C programmers).
I/O filtering

Apache 2.0 allows multiple modules to filter both the request and the response.
Now one module can pipe its output to another module as if it were being sent
directly from the TCP stream. The same mechanism works with the generated
response.

With I/O filtering in place, simple filters (e.g., data compression and decompres-
sion) can easily be implemented, and complex filters (e.g., SSL) can now be

implemented without needing to modify the the server code (unlike with Apache
1.3).

To make the filtering mechanism efficient and avoid unnecessary copying, the
bucket brigades model was used, as follows.

A bucket represents a chunk of data. Buckets linked together comprise a bri-
gade. Each bucket in a brigade can be modified, removed, and replaced with
another bucket. The goal is to minimize the data copying where possible. Buck-
ets come in different types: files, data blocks, end-of-stream indicators, pools,
etc. You don’t need to know anything about the internal representation of a
bucket in order to manipulate it.

686 | Chapter24: mod_perl 2.0: Installation and Configuration

%

ﬁ

*@%

é ,ch24.25990 Page 687 Thursday, November 18, 2004 12:47 PM

*

The stream of data is represented by bucket brigades. When a filter is called, it
gets passed the brigade that was the output of the previous filter. This brigade is
then manipulated by the filter (e.g., by modifying some buckets) and passed to
the next filter in the stack.

Figure 24-1 depicts an imaginary bucket brigade. The figure shows that after the
presented bucket brigade has passed through several filters, some buckets were
removed, some were modified, and some were added. Of course, the handler
that gets the brigade doesn’t know the history of the brigade; it can only see the
existing buckets in the brigade. We will see bucket brigades in use when discuss-
ing protocol handlers and filters.

Apache 2.0
Bucket brigades <

: Original buckets Removed buckets Added buckets

Sl

S

'Q/Q/
& S S

Figure 24-1. Imaginary bucket brigade

Multi-Processing Model modules (MPMs)
In the previous Apache generation, the same code base was trying to manage
incoming requests for different platforms, which led to scalability problems on
certain (mostly non-Unix) platforms. This also led to an undesired complexity of
the code.

Apache 2.0 introduces the concept of MPMs, whose main responsibility is to map
the incoming requests to either threads, processes, or a threads/processes hybrid.
Now it’s possible to write different processing modules specific to various plat-
forms. For example, Apache 2.0 on Windows is much more efficient and main-
tainable now, since it uses mpm_winnt, which deploys native Windows features.

What's New in Apache 2.0 | 687

4~ 4

%%

é ,ch24.25990 Page 688 Thursday, November 18, 2004 12:47 PM

*

.

Here is a partial list of the major MPMs available as of this writing:

prefork
The prefork MPM implements Apache 1.3’s preforking model, in which
each request is handled by a different forked child process.

worker
The worker MPM implements a hybrid multi-process/multi-threaded
approach based on the pthreads standard.

mpmt_os2, netware, winnt, and beos
These MPMs also implement the hybrid multi-process/multi-threaded
model, like worker, but unlike worker, each is based on the native OS thread
implementations, while worker uses the pthread library available on Unix.

On platforms that support more than one MPM, it’s possible to switch the used
MPMs as the need changes. For example, on Unix it’s possible to start with a
preforked module, then migrate to a more efficient threaded MPM as demand
grows and the code matures (assuming that the code base is capable of running
in the threaded environment).

New hook scheme

In Apache 2.0 it’s possible to dynamically register functions for each Apache
hook, with more than one function registered per hook. Moreover, when adding
new functions, you can specify where the new function should be added—for
example, a function can be inserted between two already registered functions, or
in front of them.

Protocol modules

The previous Apache generation could speak only the HTTP protocol. Apache 2.
0 has introduced a “server framework” architecture, making it possible to plug
in handlers for protocols other than HTTP. The protocol module design also
abstracts the transport layer, so protocols such as SSL can be hooked into the
server without requiring modifications to the Apache source code. This allows
Apache to be extended much further than in the past, making it possible to add
support for protocols such as FTP, NNTP, POP3, RPC flavors, and the like. The
main advantage is that protocol plug-ins can take advantage of Apache’s porta-
bility, process/thread management, configuration mechanism, and plug-in API.

GNU Autoconf-based configuration

Apache 2.0 uses the ubiquitous GNU Autoconf for its configuration process, to
make the configuration process more portable.

Parsed configuration tree

Apache 2.0 makes the parsed configuration tree available at runtime, so mod-
ules needing to read the configuration data (e.g., mod_info) don’t have to re-
parse the configuration file, but can reuse the parsed tree.

688

| Chapter24: mod_perl 2.0: Installation and Configuration

%

ﬁ

*@%

é ,ch24.25990 Page 689 Thursday, November 18, 2004 12:47 PM

*

All these new features boost Apache’s performance, scalability, and flexibility. The
APR helps the overall performance by doing lots of platform-specific optimizations
in the APR internals and giving the developer the already greatly optimized API.

The 1/0O layering helps performance too, since now modules don’t need to waste
memory and CPU cycles to manually store the data in shared memory or pnotes in
order to pass the data to another module (e.g., to provide gzip compression for out-
going data).

And, of course, an important impact of these features is the simplification and added
flexibility for the core and third-party Apache module developers.

What’s New in Perl 5.6.0-5.8.0

As mentioned earlier, Perl 5.6.0 is the minimum requirement for mod_perl 2.0.
However, certain new features work only with Perl 5.8.0 and higher.

The following are the important changes in the recent Perl versions that had an
impact on mod_perl. For a complete list of changes, see the appropriate perldelta
manpage. The 5.6 generation of Perl introduced the following features:

* The beginnings of support for running multiple interpreters concurrently in dif-
ferent threads. In conjunction with the perl clone() API call, which can be used
to selectively duplicate the state of any given interpreter, it is possible to compile
a piece of code once in an interpreter, clone that interpreter one or more times,
and run all the resulting interpreters in distinct threads. See the perlembed and
perl561delta manpages.

* The core support for declaring subroutine attributes, which is used by mod_perl
2.0’s method handlers (with the : method attribute). See the attributes manpage.

* The warnings pragma, which allows programmers to force the code to be super
clean, via the setting:

use warnings FATAL => 'all’;

which will abort any code that generates warnings. This pragma also allows fine
control over what warnings should be reported. See the perllexwarn manpage.

* Certain CORE:: functions can now be overridden via the CORE::GLOBAL::
namespace. For example, mod_perl now can override exit() globally by defin-
ing CORE::GLOBAL::exit. So when exit() is called, CORE::GLOBAL::exit() gets
invoked. Note that you can still use CORE::exit() to get the original behavior.
See the perlsub manpage.

* The XSLoader extension as a simpler alternative to DynaLoader. See the XSLoader
manpage.
* Large-file support. If you have filesystems that support files larger than 2 GB),

you may now also be able to create and access them from Perl. See the
perl561delta manpage.

What's New in Perl 5.6.0-5.8.0 | 689

%

ﬁ

*@%

é ,ch24.25990 Page 690 Thursday, November 18, 2004 12:47 PM

*

Multiple performance enhancements. See the perl561delta manpage.
Numerous memory leaks were fixed. See the perl561delta manpage.

Improved security features: more potentially unsafe operations taint their results
for improved security. See the perilsec and perl561delta manpages.

Perl is now available on new platforms: GNU/Hurd, Rhapsody/Darwin, and
EPOC.

Overall, multiple bugs and problems were fixed in Perl 5.6.1, so if you plan on run-
ning the 5.6 generation, you should run at least 5.6.1. It is possible that when this
book is released 5.6.2 will be out, which will then incorporate the bug fixes from Perl
5.8.0.

Perl 5.8.0 has introduced the following features:

The experimental PerllO layer, introduced in 5.6.0, has been stabilized and
become the default I/O layer in 5.8.0. Now the I/O stream can be filtered
through multiple I/O layers. See the perlapio and perliol manpages.

For example, this allows mod_perl to interoperate with the APR 1/O layer and
even use the APR I/0O layer in Perl code. See the APR::PerlIO manpage.

Another example of using this new feature is the extension of the open() func-
tionality to create anonymous temporary files via:

open my $fh, "+>", undef or die $!;
That is a literal undef(), not an undefined value. See the open(') entry in the perl-
func manpage.

More keywords are now overridable via CORE::GLOBAL::. See the perlsub
manpage.

The signal handling in Perl has been notoriously unsafe because signals have
been able to arrive at inopportune moments, leaving Perl in an inconsistent state.
Now Perl delays signal handling until it is safe.

File::Temp was added to allow creation of temporary files and directories in an
easy, portable, and secure way. See the File:: Temp manpage.

A new command-line option, -t, is available. It is the little brother of -T: instead
of dying on taint violations, lexical warnings are given. This is meant only as a
temporary debugging aid while securing the code of old legacy applications. It is
not a substitute for -T. See the perlrun manpage.

A new special variable, ${"TAINT}, was introduced. It indicates whether taint
mode is enabled. See the perlvar manpage.

Thread implementation is much improved since 5.6.0. The Perl interpreter
should now be completely thread-safe, and 5.8.0 marks the arrival of the threads
module, which allows Perl programs to work with threads (creating them, shar-
ing variables, etc.).

Much better support for Unicode has been added.

690

| Chapter24: mod_perl 2.0: Installation and Configuration

%

ﬁ

*@%

é ,ch24.25990 Page 691 Thursday, November 18, 2004 12:47 PM

*

* Numerous bugs and memory leaks have been fixed. For example, now you can
localize the tied Apache: :DBI database handles without leaking memory.

* Perl is now available on new platforms: AtheOS, Mac OS Classic, MinGW, NCR
MP-RAS, NonStop-UX, NetWare, and UTS. Also, the following platforms are
again supported: BeOS, DYNIX/ptx, POSIX-BC, VM/ESA, and z/OS (0S/390).

What’s New in mod_perl 2.0

The new features introduced by Apache 2.0 and the Perl 5.6 and 5.8 generations pro-
vide the base of the new mod_perl 2.0 features. In addition, mod_perl 2.0 reimple-
ments itself from scratch, providing such new features as a new build and testing
framework. Let’s look at the major changes since mod_perl 1.0.

Thread Support

In order to adapt to the Apache 2.0 threads architecture (for threaded MPMs), mod_
perl 2.0 needs to use thread-safe Perl interpreters, also known as ithreads (interpreter
threads). This mechanism is enabled at compile time and ensures that each Perl
interpreter instance is reentrant—that is, multiple Perl interpreters can be used con-
currently within the same process without locking, as each instance has its own copy
of any mutable data (symbol tables, stacks, etc.). This of course requires that each
Perl interpreter instance is accessed by only one thread at any given time.

The first mod_perl generation has only a single PerlInterpreter, which is con-
structed by the parent process, then inherited across the forks to child processes.
mod_perl 2.0 has a configurable number of PerlInterpreters and two classes of inter-
preters, parent and clone. A parent is like in mod_perl 1.0, where the main interpreter
created at startup time compiles any preloaded Perl code. A clone is created from the
parent using the Perl API perl clone() function. At request time, parent interpreters
are used only for making more clones, as the clones are the interpreters that actually
handle requests. Care is taken by Perl to copy only mutable data, which means that
no runtime locking is required and read-only data such as the syntax tree is shared
from the parent, which should reduce the overall mod_perl memory footprint.

Rather than creating a PerlInterperter for each thread, by default mod_perl creates
a pool of interpreters. The pool mechanism helps cut down memory usage a great
deal. As already mentioned, the syntax tree is shared between all cloned interpreters.
If your server is serving more than just mod_perl requests, having a smaller number
of PerlInterpreters than the number of threads will clearly cut down on memory
usage. Finally, perhaps the biggest win is memory reuse: as calls are made into Perl
subroutines, memory allocations are made for variables when they are used for the
first time. Subsequent use of variables may allocate more memory; e.g., if a scalar
variable needs to hold a longer string than it did before, or an array has new ele-
ments added. As an optimization, Perl hangs onto these allocations, even though

What's New inmod_perl2.0 | 691

%

ﬁ

*@%

é ,ch24.25990 Page 692 Thursday, November 18, 2004 12:47 PM

*

their values go out of scope. mod_perl 2.0 has much better control over which
PerlInterpreters are used for incoming requests. The interpreters are stored in two
linked lists, one for available interpreters and another for busy ones. When needed to
handle a request, one interpreter is taken from the head of the available list, and it’s
put back at the head of the same list when it’s done. This means that if, for example,
you have ten interpreters configured to be cloned at startup time, but no more than
five are ever used concurrently, those five continue to reuse Perl’s allocations, while
the other five remain much smaller, but ready to go if the need arises.

The interpreters pool mechanism has been abstracted into an API known as tipool
(thread item pool). This pool, currently used to manage a pool of PerlInterpreter
objects, can be used to manage any data structure in which you wish to have a
smaller number of items than the number of configured threads.

It’s important to notice that the Perl ithreads implementation ensures that Perl code
is thread-safe, at least with respect to the Apache threads in which it is running.
However, it does not ensure that functions and extensions that call into third-party
C/C++ libraries are thread-safe. In the case of non—thread-safe extensions, if it is not
possible to fix those routines, care needs to be taken to serialize calls into such func-
tions (either at the XS or Perl level). See Perl 5.8.0’s perlthrtut manpage.

Note that while Perl data is thread-private unless explicitly shared and threads
themselves are separate execution threads, the threads can affect process-scope
state, affecting all the threads. For example, if one thread does chdir("/tmp"), the
current working directory of all threads is now /tmp. While each thread can correct
its current working directory by storing the original value, there are functions whose
process-scope changes cannot be undone. For example, chroot() changes the root
directory of all threads, and this change is not reversible. Refer to the perlthrtut
manpage for more information.

Perl Interface to the APR and Apache APIs

As we mentioned earlier, Apache 2.0 uses two APIs:

* The Apache Portable Runtime (APR) API, which implements a portable and effi-
cient API to generically work with files, threads, processes, shared memory, etc.

* The Apache API, which handles issues specific to the web server

mod_perl 2.0 provides its own very flexible special-purpose XS code generator,
which is capable of doing things none of the existing generators can handle. It’s pos-
sible that in the future this generator will be generalized and used for other projects
of a high complexity.

This generator creates the Perl glue code for the public APR and Apache APIs, almost
without a need for any extra code (just a few thin wrappers to make the API more
Perlish).

692 | Chapter24: mod_perl 2.0: Installation and Configuration

%

ﬁ

*@%

é ,ch24.25990 Page 693 Thursday, November 18, 2004 12:47 PM

*

Since APR can be used outside of Apache, the Perl APR:: modules can be used out-
side of Apache as well.

Other New Features

In addition to the already mentioned new features in mod_perl 2.0, the following are
of major importance:

* Apache 2.0 protocol modules are supported. Later we will see an example of a
protocol module running on top of mod_perl 2.0.

* mod_perl 2.0 provides a very simple-to-use interface to the Apache filtering API;
this is of great interest because in mod_perl 1.0 the Apache: :Filter and Apache::
OutputChain modules, used for filtering, had to go to great lengths to implement
filtering and couldn’t be used for filtering output generated by non-Perl mod-
ules. Moreover, incoming-stream filtering has now become possible. We will dis-
cuss filtering and see a few examples later on.

* A feature-full and flexible Apache::Test framework was developed especially for
mod_perl testing. While intended to test the core mod_perl features, it is also used
by third-party module writers to easily test their modules. Moreover, Apache: : Test
was adopted by Apache and is currently used to test the Apache 1.3, 2.0, and other
ASF projects. Anything that runs on top of Apache can be tested with Apache::
Test, whether the target is written in Perl, C, PHP, etc.

* The support of the new MPMs makes mod_perl 2.0 able to scale better on a
wider range of platforms. For example, if you’ve happened to try mod_perl 1.0
on Win32 you probably know that parallel requests had to be serialized—i.e.,
only a single request could be processed at a time, rendering the Win32 plat-
form unusable with mod_perl as a heavy production service. Thanks to the new
Apache MPM design, mod_perl 2.0 can now efficiently process parallel requests
on Win32 platforms (using its native win32 MPM).

Improved and More Flexible Configuration

mod_perl 2.0 provides new configuration directives for the newly added features and
improves upon existing ones. For example, the PerlOptions directive provides fine-
grained configuration for what were compile-time only options in the first mod_perl
generation. The Perl*FilterHandler directives provide a much simpler Apache filter-
ing API, hiding most of the details underneath. We will talk in detail about these and
other options in the section “Configuring mod_perl 2.0.”

The new Apache: :Directive module provides a Perl interface to the Apache configu-
ration tree, which is another new feature in Apache 2.0.

What's New inmod_perl2.0 | 693

ﬁ

*@%

é ,ch24.25990 Page 694 Thursday, November 18, 2004 12:47 PM

*

.

Optimizations

The rewrite of mod_perl gives us a chance to build a smarter, stronger, and faster
implementation based on lessons learned over the years since mod_perl was intro-
duced. There are some optimizations that can be made in the mod_perl source code,
some that can be made in the Perl space by optimizing its syntax tree, and some that
are a combination of both.

Installing mod_perl 2.0

Since as of this writing mod_perl 2.0 hasn’t yet been released, the installation
instructions may change a bit, but the basics should be the same. Always refer to the
mod_perl documentation for the correct information.

Installing from Source

First download the latest stable sources of Apache 2.0, mod_perl 2.0, and Perl 5.8.0."
Remember that mod_perl 1.0 works only with Apache 1.3, and mod_perl 2.0
requires Apache 2.0. You can get the sources from:

* mod_perl 2.0—http://perl.apache.org/dist/
* Apache 2.0—http://httpd.apache.org/dist/
* Perl 5.8.0—http://cpan.org/src/

You can always find the most up-to-date download information at http://perl.apache.org/
download).

Next, build Apache 2.0:

1. Extract the source (as usual, replace x with the correct version number):
panic% tar -xzvf httpd-2.0.xx
If you don’t have GNU tar(1), use the appropriate tools and flags to extract the
source.
2. Configure:

panic% cd httpd-2.0.xx
panic% ./configure --prefix=/home/httpd/httpd-2.0 --with-mpm=prefork

Adjust the --prefix option to the directory where you want Apache 2.0 to be
installed. If you want to use a different MPM, adjust the --with-mpm option. The
easiest way to find all of the configuration options for Apache 2.0 is to run:

panic% ./configure --help
3. Finally, build and install:

panic% make && make install

* Perl 5.6.1 can be used with prefork, but if you build from source why not go for the best?

694 | Chapter24: mod_perl 2.0: Installation and Configuration

%

ﬁ

*@%

é ,ch24.25990 Page 695 Thursday, November 18, 2004 12:47 PM

*

If you don’t have Perl 5.6.0 or higher installed, or you need to rebuild it because you
want to enable certain compile-time features or you want to run one of the threaded
MPMs, which require Perl 5.8.0, build Perl (we will assume that you build Perl 5.8.0):

1. Extract the source:
panic% tar -xzvf perl-5.8.0.tar.gz
2. Configure:

panic% cd perl-5.8.0

panic% ./Configure -des -Dprefix=$HOME/perl/perl-5.8.0 -Dusethreads
This configuration accepts all the defaults suggested by the Configure script
and produces a terse output. The -Dusethreads option enables Perl ithreads.
The -Dprefix option specifies a custom installation directory, which you may
want to adjust. For example, you may decide to install it in the default loca-
tion provided by Perl, which is /usr/local under most systems.

For a complete list of configuration options and for information on installation
on non-Unix systems, refer to the INSTALL document.

3. Now build, test, and install Perl:
panic% make && make test 8& make install

Before proceeding with the installation of mod_perl 2.0, it’s advisable to install at
least the LWP package into your newly installed Perl distribution so that you can
fully test mod_perl 2.0 later. You can use CPAN.pm to accomplish that:

panic% $HOME/perl/perl-5.8.0/bin/perl -MCPAN -e 'install("LWP")'

Now that you have Perl 5.8.0 and Apache 2.0 installed, you can proceed with the
mod_perl 2.0 installation:

1. Extract the source:
panic% tar -xzvf mod_perl-2.0.x.tar.gz
2. Remember the nightmare number of options for mod_perl 1.0? You need only
two options to build mod_perl 2.0. If you need more control, read install.pod in
the source mod_perl distribution or online at http://perl.apache.org/docs/2.0/user/.
Configure:

panic% cd mod_perl-2.0.x
panic% perl Makefile.PL MP_AP_PREFIX=/home/stas/httpd/prefork \
MP_INST_APACHE2=1

The MP_AP_PREFIX option specifies the base directory of the installed Apache
2.0, under which the include/ directory with Apache C header files can be found.
For example, if you have installed Apache 2.0 in the directory \Apache2 on
Win32, you should use:

MP_AP_PREFIX=\Apache2

The MP_INST_APACHE2 option is needed only if you have mod_perl 1.0
installed under the same Perl tree. You can remove this option if you don’t have
or don’t plan to install mod_perl 1.0.

Installingmod_perl 2.0 | 695

%

ﬁ

*@%

é ,ch24.25990 Page 696 Thursday, November 18, 2004 12:47 PM

3. Now build, test, and install mod_perl 2.0:
panic% make && make test 8& make install
On Win32 you have to use nmake instead of make, and the &6 chaining doesn’t
work on all Win32 platforms, so instead you should do:

C:\modperl-2.0\> nmake
C:\modperl-2.0\> nmake test
C:\modperl-2.0\> nmake install

Installing Binaries

Apache 2.0 binaries can be obtained from http://httpd.apache.org/dist/binaries/.
Perl 5.6.1 or 5.8.0 binaries can be obtained from http://cpan.org/ports/index.html.

For mod_perl 2.0, as of this writing only the binaries for the Win32 platform are
available, kindly prepared and maintained by Randy Kobes. Once mod_perl 2.0 is
released, various OS distributions will provide binary versions for their platforms.

If you are not on a Win32 platform you can safely skip to the next section.
There are two ways of obtaining a binary mod_perl 2.0 package for Win32:

PPM

The first, for ActivePerl users, is through PPM, which assumes you already have
ActivePerl (build 6xx or later), available from http://www.activestate.com/, and a
Win32 Apache 2.0 binary, available from http://www.apache.org/dist/httpd/
binaries/win32/. In installing this, you may find it convenient when transcribing
any Unix-oriented documentation to choose installation directories that do not
have spaces in their names (e.g., C:\Apache2).

After installing Perl and Apache 2.0, you can then install mod_perl 2.0 via the
PPM utility. ActiveState does not maintain mod_perl in its PPM repository, so you
must get it from somewhere else. One way is simply to do:

C:\> ppm install http://theoryx5.uwinnipeg.ca/ppmpackages/mod_perl-2.ppd
Another way, which will be useful if you plan on installing additional Apache
modules, is to set the repository within the PPM shell utility as follows (the lines
are broken here for readability):

PPM> set repository theoryxs
http://theoryx5.uwinnipeg.ca/cgi-bin/ppmserver?urn:/PPMServer

or, for PPM3:

PPM> rep add theoryx5
http://theoryx5.uwinnipeg.ca/cgi-bin/ppmserver?urn:/PPMServer

mod_perl 2.0 can then be installed as:
PPM> install mod perl-2

This will install the necessary modules under an Apache2/ subdirectory in your
Perl tree, so as not to disturb an existing Apache/ directory from mod_perl 1.0.

696 | Chapter24: mod_perl 2.0: Installation and Configuration

- ad

é ,ch24.25990 Page 697 Thursday, November 18, 2004 12:47 PM

*

See the next section for instructions on how to add this directory to the @INC
path for searching for modules.

The mod_perl PPM package also includes the necessary Apache DLL mod_perl.so;
a post-installation script that will offer to copy this file to your Apache2 modules
directory (e.g., C:\Apache2\modules) should be run. If this is not done, you can
get the file mod_perl-2.tar.gz from http://theoryx5.uwinnipeg.ca/ppmpackages/
x86/. This file, when unpacked, contains mod_perl.so in the top-level directory.

Note that the mod_perl package available from this site will always use the lat-
est mod_perl sources compiled against the latest official Apache release; depend-
ing on changes made in Apache, you may or may not be able to use an earlier
Apache binary. However, in the Apache Win32 world it is a particularly good
idea to use the latest version, for bug and security fixes.

Apache/mod_perl binary
At ftp://theoryx5.uwinnipeg.ca/pub/other/ you can find an archive called Apache2.
tar.gz containing a binary version of Apache 2.0 with mod_perl 2.0. This archive
unpacks into an Apache2 directory, underneath which is a blib subdirectory con-
taining the necessary mod_perl files (enabled with a PerlSwitches directive in
httpd.conf). Some editing of httpd.conf will be necessary to reflect the location of
the installed directory. See the Apache2.readme file for further information.

This package, which is updated periodically, is compiled against recent CVS
sources of Apache 2.0 and mod_perl 2.0. As such, it may contain features, and
bugs, not present in the current official releases. Also for this reason, these may
not be binary-compatible with other versions of Apache 2.0/mod_perl 2.0.

Apache/mod_perl/Perl 5.8 binary distribution

Because mod_perl 2.0 works best with Perl 5.8 in threaded environments such as
Apache 2.0 with the win32 MPM, there is a package including Perl 5.8, Apache
2.0, and mod_perl 2.0. To get this, look for the perl-5.8-win32-bin.tar.gz pack-
age at ftp://theoryx5.uwinnipeg.ca/pub/other/, and extract it to C:\, which will
give you an Apache2 directory containing the Apache 2.0 installation along with
mod_perl 2.0, and a Perl directory containing the Perl installation (you should
add this Perl directory to your path).

Configuring mod_perl 2.0

Similar to mod_perl 1.0, in order to use mod_perl 2.0 a few configuration settings
should be added to httpd.conf. They are quite similar to the 1.0 settings, but some
directives were renamed and new directives were added.

Enabling mod_ perl
To enable mod_perl as a DSO, add this to httpd.conf:

LoadModule perl module modules/mod_perl.so

Configuringmod_perl 2.0 | 697

.
4~ ~4]e

é ,ch24.25990 Page 698 Thursday, November 18, 2004 12:47 PM

This setting specifies the location of the mod_per]l module relative to the ServerRoot
setting, so you should put it somewhere after ServerRoot is specified.

Win32 users need to make sure that the path to the Perl binary (e.g., C:\Perl\bin) is in
the PATH environment variable. You could also add the directive:

LoadFile "/Path/to/your/Perl/bin/perl5x.d1l"
to httpd.conf to load your Perl DLL, before loading mod_perl.so.

Accessing the mod_ perl 2.0 Modules

To prevent you from inadvertently loading mod_perl 1.0 modules, mod_perl 2.0 Perl
modules are installed into dedicated directories under Apache2/. The Apache2 mod-
ule prepends the locations of the mod_perl 2.0 libraries to @INC: @INC is the same as
the core @INC, but with Apache2/ prepended. This module has to be loaded just after
mod_perl has been enabled. This can be accomplished with:

use Apache2 ();
in the startup file. If you don’t use a startup file, you can add:
PerIModule Apache2

to httpd.conf, due to the order in which the PerlRequire and PerIModule directives are
processed.

Startup File
Next, a startup file with Perl code usually is loaded:
PerlRequire "/home/httpd/httpd-2.0/perl/startup.pl”

It’s used to adjust Perl module search paths in @INC, preload commonly used mod-
ules, precompile constants, etc. A typical startup.pl file for mod_perl 2.0 is shown in
Example 24-1.

Example 24-1. startup.pl
use Apache2 ();

use 1ib qw(/home/httpd/perl);

enable if the mod perl 1.0 compatibility is needed
use Apache::compat ();

preload all mp2 modules
use ModPerl: :MethodLookup;
ModPerl: :MethodLookup: :preload all modules();

use ModPerl::Util (); #for CORE::GLOBAL::exit

698 | Chapter24: mod_perl 2.0: Installation and Configuration

- ad

é ,ch24.25990 Page 699 Thursday, November 18, 2004 12:47 PM

Example 24-1. startup.pl (continued)

use Apache::RequestRec ();
use Apache: :RequestIO ();
use Apache::RequestUtil ();

use Apache::Server ();

use Apache::ServerUtil ();
use Apache::Connection ();
use Apache::Log ();

use APR::Table ();
use ModPerl::Registry ();

use Apache::Const -compile => ':common';
use APR::Const -compile => ':common';
1;
In this file the Apache2 module is loaded, so the 2.0 modules will be found. After-
wards, @INC is adjusted to include nonstandard directories with Perl modules:
use 1lib qw(/home/httpd/perl);

If you need to use the backward-compatibility layer, to get 1.0 modules that haven’t
yet been ported to work with mod_perl 2.0, load Apache: : compat:

use Apache::compat ();

Next, preload the commonly used mod_perl 2.0 modules and precompile the com-
mon constants. You can preload all mod_perl 2.0 modules by uncommenting the fol-
lowing two lines:

use ModPerl::MethodLookup;
ModPerl: :MethodLookup: :preload_all_modules();

Finally, the startup.pl file must be terminated with 1;.

Perl’s Command-Line Switches

Now you can pass Perl’s command-line switches in httpd.conf by using the
PerlSwitches directive, instead of using complicated workarounds.

For example, to enable warnings and taint checking, add:
PerlSwitches -wT

The -I command-line switch can be used to adjust @INC values:
PerlSwitches -I/home/stas/modperl

For example, you can use that technique to set different @INC values for different vir-
tual hosts, as we will see later.

Configuringmod_perl2.0 | 699

é ,ch24.25990 Page 700 Thursday, November 18, 2004 12:47 PM

mod_ perl 2.0 Core Handlers

mod_perl 2.0 provides two types of core handlers: modperl and perl-script.

modperl
modperl is configured as:
SetHandler modperl

This is the bare mod_perl handler type, which just calls the Per1*Handler’s callback
function. If you don’t need the features provided by the perl-script handler, with
the modperl handler, you can gain even more performance. (This handler isn’t avail-
able in mod_perl 1.0.)

Unless the Perl*Handler callback running under the modperl handler is configured
with:

PerlOptions +SetupEnv
or calls:
$r->subprocess_env;

in a void context (which has the same effect as PerlOptions +SetupEnv for the han-
dler that called it), only the following environment variables are accessible via %ENV:

* MOD_PERL and GATEWAY INTERFACE (always)
* PATH and TZ (if you had them defined in the shell or httpd.conf)
Therefore, if you don’t want to add the overhead of populating %ENV when you sim-

ply want to pass some configuration variables from httpd.conf, consider using
PerlSetVar and PerlAddVar instead of PerlSetEnv and PerlPassEnv.

perl-script
perl-script is configured as:
SetHandler perl-script
Most mod_perl handlers use the perl-script handler. Here are a few things to note:
* PerlOptions +GlobalRequest is in effect unless:
PerlOptions -GlobalRequest
is specified.
* PerlOptions +SetupEnv is in effect unless:
PerlOptions -SetupEnv
is specified.
* STDOUT and STDOUT get tied to the request object $r, which makes it possible to

read from STDIN and print directly to STDOUT via print(), instead of having to use
implicit calls like $r->print().

700 | Chapter24: mod_perl 2.0: Installation and Configuration

- ad

é ,ch24.25990 Page 701 Thursday, November 18, 2004 12:47 PM

* Several special global Perl variables are saved before the handler is called and
restored afterward (as in mod_perl 1.0). These include %ENV, @INC, $/, and
STDOUT’s $| and END blocks.

A simple response handler example

Let’s demonstrate the differences between the modperl and perl-script core han-
dlers. Example 24-2 represents a simple mod_perl response handler that prints out
the environment variables as seen by it.

Example 24-2. Apache/PrintEnv1.pm
package Apache::PrintEnvi;

use strict;
use warnings;

use Apache::RequestRec (); # for $r->content type
use Apache::Const -compile => 'OK';

sub handler {
my $r = shift;

$r->content_type('text/plain');
for (sort keys %ENV){

print "$ => $ENV{$ }\n";
}

return Apache::0K;

}
1

This is the required configuration for the perl-script handler:

PerIModule Apache::PrintEnvi
<Location /print_envi>
SetHandler perl-script
PerlResponseHandler Apache::PrintEnvi
</Location>

Now issue a request to http://localhost/print_envl, and you should see all the envi-
ronment variables printed out.

The same response handler, adjusted to work with the modperl core handler, is
shown in Example 24-3.

Configuring mod_perl 2.0 | 701

é ,ch24.25990 Page 702 Thursday, November 18, 2004 12:47 PM

Example 24-3. Apache/PrintEnv2.pm

package Apache::PrintEnv2;

use strict;
use warnings;

use Apache::RequestRec (); # for $r->content type
use Apache::RequestIO (); # for $r->print

use Apache::Const -compile => 'OK';

sub handler {
my $r = shift;

$r->content_type('text/plain');

$r->subprocess_env;

for (sort keys %ENV){
$r->print("$_ => $ENV{$ }\n");

}

return Apache::0K;

}
1

The configuration now will look like this:

PerlModule Apache::PrintEnv2
<Location /print_env2>
SetHandler modperl
PerlResponseHandler Apache::PrintEnv2
</Location>

Apache: :PrintEnv2 cannot use print(), so it uses $r->print() to generate a response.
Under the modperl core handler, %ENV is not populated by default; therefore,

subprocess_env() is called in a void context. Alternatively, we could configure this
section to do:

PerlOptions +SetupEnv

If you issue a request to http://localhost/print_env2, you should see all the environ-
ment variables printed out as with http:/localhost/print_env1.

PerlOptions Directive

The PerlOptions directive provides fine-grained configuration for what were compile-
time—only options in the first mod_perl generation. It also provides control over
what class of PerlInterpreter is used for a <VirtualHost> or location configured with
<Location>, <Directory>, etc.

702 | Chapter24: mod_perl 2.0: Installation and Configuration

4~ ~4]e

é ,ch24.25990 Page 703 Thursday, November 18, 2004 12:47 PM

Options are enabled by prepending + and disabled with -. The options are discussed
in the following sections.

Enable

On by default; can be used to disable mod_perl for a given <VirtualHost>. For exam-
ple:

<VirtualHost ...>
PerlOptions -Enable
</VirtualHost>

Clone

Share the parent Perl interpreter, but give the <VirtualHost> its own interpreter pool.
For example, should you wish to fine-tune interpreter pools for a given virtual host:
<VirtualHost ...>
PerlOptions +Clone
PerlInterpStart 2
PerlInterpMax 2
</VirtualHost>
This might be worthwhile in the case where certain hosts have their own sets of large
modules, used only in each host. Tuning each host to have its own pool means that
the hosts will continue to reuse the Perl allocations in their specific modules.

When cloning a Perl interpreter, to inherit the parent Perl interpreter’s PerlSwitches,
use:

<VirtualHost ...>

PerlSwitches +inherit
</VirtualHost>

Parent

Create a new parent Perl interpreter for the given <VirtualHost> and give it its own
interpreter pool (implies the Clone option).

A common problem with mod_perl 1.0 was that the namespace was shared by all
code within the process. Consider two developers using the same server, each of
whom wants to run a different version of a module with the same name. This exam-
ple will create two parent Perl interpreters, one for each <VirtualHost>, each with its
own namespace and pointing to a different path in @INC:
<VirtualHost ...>
ServerName devi
PerlOptions +Parent

PerlSwitches -Mblib=/home/devi/1lib/perl
</VirtualHost>

<VirtualHost ...>
ServerName dev2

Configuringmod_perl 2.0 | 703

4~ ~4]e

é ,ch24.25990 Page 704 Thursday, November 18, 2004 12:47 PM

PerlOptions +Parent
PerlSwitches -Mblib=/home/dev2/1ib/perl
</VirtualHost>

Perl*Handler

Disable specific Perl*Handlers (all compiled-in handlers are enabled by default). The
option name is derived from the Perl*Handler name, by stripping the Perl and
Handler parts of the word. So PerllLogHandler becomes Log, which can be used to dis-
able PerllLogHandler:

PerlOptions -Log

Suppose one of the hosts does not want to allow wusers to configure
PerlAuthenHandler, PerlAuthzHandler, PerlAccessHandler, and <Perls> sections:
<VirtualHost ...>

PerlOptions -Authen -Authz -Access -Sections
</VirtualHost>

Or maybe it doesn’t want users to configure anything but the response handler:

<VirtualHost ...>
PerlOptions None +Response
</VirtualHost>

AutolLoad

Resolve Perl*Handlers at startup time; loads the modules from disk if they’re not
already loaded.

In mod_perl 1.0, configured Perl*Handlers that are not fully qualified subroutine
names are resolved at request time, loading the handler module from disk if needed.
In mod_perl 2.0, configured Perl*Handlers are resolved at startup time. By default,
modules are not auto-loaded during startup-time resolution. It is possible to enable
this feature with:

PerlOptions +Autoload
Consider this configuration:
PerlResponseHandler Apache::Magick

In this case, Apache::Magick is the package name, and the subroutine name will
default to handler. If the Apache: :Magick module is not already loaded, PerlOptions
+Autoload will attempt to pull it in at startup time. With this option enabled you
don’t have to explicitly load the handler modules. For example, you don’t need to

add:
PerIModule Apache::Magick

GlobalRequest

Set up the global Apache: :RequestRec object for use with Apache->request. This set-
ting is needed, for example, if you use CGI.pm to process the incoming request.

704 | Chapter24: mod_perl 2.0: Installation and Configuration

- ad

é ,ch24.25990 Page 705 Thursday, November 18, 2004 12:47 PM

This setting is enabled by default for sections configured as:

<Location ...>
SetHandler perl-script

</Loéé£ion>
And can be disabled with:

<Location ...>
SetHandler perl-script
PerlOptions -GlobalRequest

</Location>

ParseHeaders

Scan output for HTTP headers. This option provides the same functionality as mod_
perl 1.0’s PerlSendHeaders option, but it’s more robust. It usually must be enabled
for registry scripts that send the HTTP header with:

print "Content-type: text/html\n\n";

MergeHandlers
Turn on merging of Perl*Handler arrays. For example, with this setting:

PerlFixupHandler Apache::FixupA

<Location /inside>
PerlFixupHandler Apache::FixupB
</Location>
a request for /inside runs only Apache: :FixupB (mod_perl 1.0 behavior). But with this
configuration:

PerlFixupHandler Apache::FixupA

<Location /inside>
PerlOptions +MergeHandlers
PerlFixupHandler Apache::FixupB
</Location>

a request for /inside will run both the Apache: : FixupA and Apache: : FixupB handlers.

SetupEnv
Set up environment variables for each request, a la mod_cgi.

When this option is enabled, mod_perl fiddles with the environment to make it
appear as if the code is called under the mod_cgi handler. For example, the
$ENV{QUERY_STRING} environment variable is initialized with the contents of Apache::
args(), and the value returned by Apache::server hostname() is put into
$ENV{SERVER_NAME}.

Configuringmod_perl 2.0 | 705

4~ ~4]e

é ,ch24.25990 Page 706 Thursday, November 18, 2004 12:47 PM

Those who have moved to the mod_per]l API no longer need this extra %ENV popula-
tion and can gain by disabling it, since %ENV population is expensive. Code using the
CGI.pm module requires PerlOptions +SetupEnv because that module relies on a prop-
erly populated CGI environment table.

This option is enabled by default for sections configured as:

<Location ...>
SetHandler perl-script

</Location>
Since this option adds an overhead to each request, if you don’t need this functional-
ity you can turn it off for a certain section:

<Location ...»

SetHandler perl-script
PerlOptions -SetupEnv

</ Loée‘a‘.ciom
or globally affect the whole server:

PerlOptions -SetupEnv
<Location ...>

</Location>
It can still be enabled for sections that need this functionality.

When this option is disabled you can still read environment variables set by you. For
example, when you use the following configuration:

PerlOptions -SetupEnv

<Location /perl>
PerlSetEnv TEST hi
SetHandler perl-script
PerlHandler ModPerl::Registry
Options +ExecCGI

</Location>

and you issue a request for setupenvoff.pl from Example 24-4.

Example 24-4. setupenvoff.pl

use Data: :Dumper;

my $r = Apache->request();
$r->send_http header('text/plain');
print Dumper (\%ENV);

you should see something like this:

$VARL = {
'GATEWAY_INTERFACE' => 'CGI-Perl/1.1',
'MOD_PERL' => 'mod perl/2.0.1',
'"PATH" => '/bin:/usr/bin’,
'"TEST' => 'hi'
b

706 | Chapter24: mod_perl 2.0: Installation and Configuration

4~ ~4]e

é ,ch24.25990 Page 707 Thursday, November 18, 2004 12:47 PM

Notice that we got the value of the environment variable TEST.

Thread-Mode—Specific Directives
The following directives are enabled only in a threaded MPM mod_perl:

PerlinterpStart

The number of interpreters to clone at startup time.

PerlinterpMax

If all running interpreters are in use, mod_perl will clone new interpreters to handle
the request, up until this number of interpreters is reached. When PerlInterpMax is
reached, mod_per!l will block until an interpreter becomes available.

PerlinterpMinSpare

The minimum number of available interpreters this parameter will clone before a
request comes in.

PerlinterpMaxSpare

mod_perl will throttle down the number of interpreters to this number as those in
use become available.

PerlinterpMaxRequests

The maximum number of requests an interpreter should serve. The interpreter is
destroyed and replaced with a fresh clone when this number is reached.

PerlinterpScope

As mentioned, when a request in a threaded MPM is handled by mod_perl, an inter-
preter must be pulled from the interpreter pool. The interpreter is then available only
to the thread that selected it, until it is released back into the interpreter pool. By
default, an interpreter will be held for the lifetime of the request, equivalent to this
configuration:

PerlInterpScope request

For example, if a PerlAccessHandler is configured, an interpreter will be selected
before it is run and not released until after the logging phase.

Interpreters will be shared across subrequests by default; however, it is possible to
configure the interpreter scope to be per subrequest on a per-directory basis:

PerlInterpScope subrequest

Configuring mod_perl 2.0 | 707

é ,ch24.25990 Page 708 Thursday, November 18, 2004 12:47 PM

With this configuration, an autoindex-generated page, for example, would select an
interpreter for each item in the listing that is configured with a Per1*Handler.

It is also possible to configure the scope to be per handler:
PerlInterpScope handler

With this configuration, an interpreter will be selected before PerlAccessHandlers are
run and put back immediately afterwards, before Apache moves on to the authenti-
cation phase. If a PerlFixupHandler is configured further down the chain, another
interpreter will be selected and again put back afterwards, before
PerlResponseHandler is run.

For protocol handlers, the interpreter is held for the lifetime of the connection. How-
ever, a C protocol module (e.g., mod_ftp) might hook into mod_perl and provide a
request_rec record. In this case, the default scope is that of the request (the down-
load of one file). Should a mod_perl handler want to maintain state for the lifetime of
an FTP connection, it is possible to do so on a per-<VirtualHost> basis:

PerlInterpScope connection

Retrieving Server Startup Options

The httpd server startup options can be retrieved using Apache::exists config
define(). For example, to check if the server was started in single-process mode:

panic% httpd -DONE_PROCESS
use the following code:

if (Apache::exists_config define("ONE_PROCESS")) {
print "Running in a single process mode";

}

Resources

For up-to-date documentation on mod_perl 2.0, see:

http://perl.apache.org/docs/2.0/

708 | Chapter24: mod_perl 2.0: Installation and Configuration

- ad

