é ,ch20.25319 Page 570 Thursday, November 18, 2004 12:45 PM

*

CHAPTER 20

Relational Databases and mod_perl

Nowadays, millions of people surf the Internet. There are millions of terabytes of data
lying around, and many new techniques and technologies have been invented to
manipulate this data. One of these inventions is the relational database, which makes it
possible to search and modify huge stores of data very quickly. The Structured Query
Language (SQL) is used to access and manipulate the contents of these databases.

Let’s say that you started your web services with a simple, flat-file database. Then
with time your data grew big, which made the use of a flat-file database slow and
inefficient. So you switched to the next simple solution—using DBM files. But your
data set continued to grow, and even the DBM files didn’t provide a scalable enough
solution. So you finally decided to switch to the most advanced solution, a relational
database.

On the other hand, it’s quite possible that you had big ambitions in the first place
and you decided to go with a relational database right away.

We went through both scenarios, sometimes doing the minimum development using
DBM files (when we knew that the data set was small and unlikely to grow big in the
short term) and sometimes developing full-blown systems with relational databases
at the heart.

As we repeat many times in this book, none of our suggestions and examples should be
applied without thinking. But since you’re reading this chapter, the chances are that
you are doing the right thing, so we are going to concentrate on the extra benefits that
mod_perl provides when you use relational databases. We’'ll also talk about related
coding techniques that will help you to improve the performance of your service.

From now on, we assume that you use the DBI module to talk to the databases. This
in turn uses the unique database driver module for your database, which resides in
the DBD:: namespace (for example, DBD::Oracle for Oracle and DBD::mysql for
MySQL). If you stick to standard SQL, you maximize portability from one database
to another. Changing to a new database server should simply be a matter of using a
different database driver. You do this just by changing the data set name string ($dsn)
in the DBI->connect() call.

570

%

ﬁ

*@%

é ,ch20.25319 Page 571 Thursday, November 18, 2004 12:45 PM

Rather than writing your queries in plain SQL, you should probably use some other
abstraction module on top of the DBI module. This can help to make your code more
extensible and maintainable. Raw SQL coupled with DBI usually gives you the best
machine performance, but sometimes time to market is what counts, so you have to
make your choices. An abstraction layer with a well-thought-out API is a pleasure to
work with, and future modifications to the code will be less troublesome. Several
DBI abstraction solutions are available on CPAN. DBIx::Recordset, Alzabo, and
Class::DBI are just a few such modules that you may want to try. Take a look at the
other modules in the DBIx:: category—many of them provide some kind of wrap-
ping and abstraction around DBI.

Persistent Database Connections
with Apache::DBI

When people first started to use the Web, they found that they needed to write web
interfaces to their databases, or add databases to drive their web interfaces. Which-
ever way you look at it, they needed to connect to the databases in order to use
them.

CGI is the most widely used protocol for building such interfaces, implemented in
Apache’s mod_cgi and its equivalents. For working with databases, the main limita-
tion of most implementations, including mod_cgi, is that they don’t allow persistent
connections to the database. For every HTTP request, the CGI script has to connect
to the database, and when the request is completed the connection is closed.
Depending on the relational database that you use, the time to instantiate a connec-
tion may be very fast (for example, MySQL) or very slow (for example, Oracle). If
your database provides a very short connection latency, you may get away without
having persistent connections. But if not, it’s possible that opening a connection may
consume a significant slice of the time to serve a request. It may be that if you can cut
this overhead you can greatly improve the performance of your service.

Apache: :DBI was written to solve this problem. When you use it with mod_perl, you
have a database connection that persists for the entire life of a mod_perl process. This
is possible because with mod_perl, the child process does not quit when a request has
been served. When a mod_perl script needs to use a database, Apache: :DBI immedi-
ately provides a valid connection (if it was already open) and your script starts doing
the real work right away without having to make a database connection first.

Of course, the persistence doesn’t help with any latency problems you may encoun-
ter during the actual use of the database connections. Oracle, for example, is notori-
ous for generating a network transaction for each row returned. This slows things
down if the query execution matches many rows.

You may want to read Tim Bunce’s “Advanced DBI” talk, at http://dbi.perl.org/doc/
conferences/tim_1999/index.html, which covers many techniques to reduce latency.

Persistent Database Connections with Apache::DBI | 571

- ad

é ,ch20.25319 Page 572 Thursday, November 18, 2004 12:45 PM

Apache::DBI Connections

The DBI module can make use of the Apache::DBI module. When the DBI module
loads, it tests whether the environment variable $ENV{MOD PERL} is set and whether
the Apache::DBI module has already been loaded. If so, the DBI module forwards
every connect() request to the Apache: :DBI module.

When Apache: :DBI gets a connect() request, it checks whether it already has a han-
dle with the same connect() arguments. If it finds one, it checks that the connection
is still valid using the ping() method. If this operation succeeds, the database handle
is returned immediately. If there is no appropriate database handle, or if the ping()
method fails, Apache: :DBI establishes a new connection, stores the handle, and then
returns the handle to the caller.

It is important to understand that the pool of connections is not shared between the
processes. Each process has its own pool of connections.

When you start using Apache: :DBI, there is no need to delete all the disconnect()
statements from your code. They won’t do anything, because the Apache: :DBI mod-
ule overloads the disconnect() method with an empty one. You shouldn’t modify
your scripts at all for use with Apache: :DBI.

When to Use Apache::DBI (and When Not to Use It)

You will want to use the Apache: :DBI module only if you are opening just a few data-
base connections per process. If there are ten child processes and each opens two dif-
ferent connections (using different connect() arguments), in total there will be 20
opened and persistent connections.

This module must not be used if (for example) you have many users, and a unique
connection (with unique connect() arguments) is required for each user.” You can-
not ensure that requests from one user will be served by any particular process, and
connections are not shared between the child processes, so many child processes will
open a separate, persistent connection for each user. In the worst case, if you have
100 users and 50 processes, you could end up with 5,000 persistent connections,
which might be largely unused. Since database servers have limitations on the maxi-
mum number of opened connections, at some point new connections will not be per-
mitted, and eventually your service will become unavailable.

If you want to use Apache: :DBI but you have both situations on one machine, at the
time of writing the only solution is to run two mod_perl-enabled servers, one that
uses Apache: :DBI and one that does not.

* That is, database user connections. This doesn’t mean that if many people register as users on your web site
you shouldn’t use Apache: :DBI; it is only a very special case.

572 | Chapter20: Relational Databases and mod_perl

- ad

é ,ch20.25319 Page 573 Thursday, November 18, 2004 12:45 PM

In mod_perl 2.0, a threaded server can be used, and this situation is much improved.
Assuming that you have a single process with many threads and each unique open
connection is needed by only a single thread, it’s possible to have a pool of database
connections that are reused by different threads.

Configuring Apache::DBI

Apache: :DBI will not work unless mod_perl was built with:
PERL_CHILD_INIT=1 PERL_STACKED_HANDLERS=1

or:
EVERYTHING=1

during the perl Makefile.PL ... stage.

After installing this module, configuration is simple—just add a single directive to
httpd.conf:

PerlModule Apache::DBI

Note that it is important to load this module before any other Apache*DBI module
and before the DBI module itself. The best rule is just to load it first of all. You can
skip preloading DBI at server startup, since Apache: :DBI does that for you, but there is
no harm in leaving it in, as long as Apache: :DBI is loaded first.

Debugging Apache::DBI

If you are not sure whether this module is working as advertised and that your con-
nections are actually persistent, you should enable debug mode in the startup.pl
script, like this:

$Apache: :DBI::DEBUG = 1;
Starting with Apache: :DBI Version 0.84, the above setting will produce only minimal
output. For a full trace, you should set:

$Apache: :DBI::DEBUG = 2;
After setting the DEBUG level, you will see entries in the error_log file. Here is a sam-
ple of the output with a DEBUG level of 1:

12851 Apache::DBI new connect to
"test::localhostPrintError=1RaiseError=0AutoCommit=1"

12853 Apache: :DBI new connect to

"test::localhostPrintError=1RaiseError=0AutoCommit=1'
When a connection is reused, Apache: :DBI stays silent, so you can see when a real
connect() is called. If you set the DEBUG level to 2, you’ll see a more verbose output.
This output was generated after two identical requests with a single server running:

12885 Apache::DBI need ping: yes
12885 Apache::DBI new connect to

Persistent Database Connections with Apache:DBI | 573

4~ ~4]e

é ,ch20.25319 Page 574 Thursday, November 18, 2004 12:45 PM

"test::localhostPrintError=1RaiseError=0AutoCommit=1"

12885 Apache::DBI need ping: yes

12885 Apache::DBI already connected to

"test::localhostPrintError=1RaiseError=0AutoCommit=1"
You can see that process 12885 created a new connection on the first request and on
the next request reused it, since it was using the same connect() argument. More-
over, you can see that the connection was validated each time with the ping()
method.

Caveats and Troubleshooting

This section covers some of the risks and things to keep in mind when using Apache: :
DBI.

Database locking risks

When you use Apache::DBI or similar persistent connections, be very careful about
locking the database (LOCK TABLE ...) or single rows. MySQL threads keep tables
locked until the thread ends (i.e., the connection is closed) or until the tables are
explicitly unlocked. If your session dies while tables are locked, they will stay locked,
as your connection to the database won’t be closed. In Chapter 6 we discussed how
to terminate the program cleanly if the session is aborted prematurely.

Transactions

A standard Perl script using DBI will automatically perform a rollback whenever the
script exits. In the case of persistent database connections, the database handle will
not be destroyed and hence no automatic rollback will occur. At first glance it even
seems to be possible to handle a transaction over multiple requests, but the tempta-
tion should be avoided because different requests are handled by different mod_perl
processes, and a mod_perl process does not know the state of a specific transaction
that has been started by another mod_perl process.

In general, it is good practice to perform an explicit commit or rollback at the end of
every script. To avoid inconsistencies in the database in case AutoCommit is Off and
the script terminates prematurely without an explicit rollback, the Apache: :DBI mod-
ule uses a PerlCleanupHandler to issue a rollback at the end of every request.

Opening connections with different parameters

When Apache: :DBI receives a connection request, before it decides to use an existing
cached connection it insists that the new connection be opened in exactly the same
way as the cached connection. If you have one script that sets AutoCommit and one
that does not, Apache: :DBI will make two different connections. So, for example, if
you have limited Apache to 40 servers at most, instead of having a maximum of 40
open connections, you may end up with 80.

574 | Chapter20: Relational Databases and mod_perl

4~ ~4]e

é ,ch20.25319 Page 575 Thursday, November 18, 2004 12:45 PM

These two connect() calls will create two different connections:

my $dbh = DBI->connect
("DBI:mysql:test:localhost", "', "',

PrintError => 1, # warn() on errors
RaiseError => 0, # don't die on error
AutoCommit => 1, # commit executes immediately

}

) or die "Cannot connect to database: $DBI::errstr";

my $dbh = DBI->connect
("DBI:mysql:test:localhost", "', "',

PrintError => 1, # warn() on errors
RaiseError => 0, # don't die on error
AutoCommit => 0, # don't commit executes immediately

}

) or die "Cannot connect to database: $DBI::errstr";
Notice that the only difference is in the value of AutoCommit.

However, you are free to modify the handle immediately after you get it from the
cache, so always initiate connections using the same parameters and set AutoCommit
(or whatever) afterward. Let’s rewrite the second connect() call to do the right thing
(i.e., not to create a new connection):

my $dbh = DBI->connect
("DBI:mysqgl:test:localhost", "', "',

PrintError => 1, # warn() on errors
RaiseError => 0, # don't die on error
AutoCommit => 1, # commit executes immediately

}

) or die "Cannot connect to database: $DBI::errstr";
$dbh->{AutoCommit} = 0; # don't commit if not asked to

When you aren’t sure whether you’re doing the right thing, turn on debug mode.

When the $dbh attribute is altered after connect(), it affects all other handlers retriev-
ing this database handle. Therefore, it’s best to restore the modified attributes to
their original values at the end of database handle usage. As of Apache: :DBI Version
0.88, the caller has to do this manually. The simplest way to handle this is to localize
the attributes when modifying them:

my $dbh = DBI->connect(...) ...
local $dbh->{LongReadlLen} = 40;
}

Here, the LongReadlLen attribute overrides the value set in the connect() call or its
default value only within the enclosing block.

Persistent Database Connections with Apache:DBI | 575

4~ ~4]e

é ,ch20.25319 Page 576 Thursday, November 18, 2004 12:45 PM

The problem with this approach is that prior to Perl Version 5.8.0 it causes memory
leaks. So the only clean alternative for older Perl versions is to manually restore
$dbh’s values:

my @attrs = qw(LongReadLen PrintError);
my %orig = ();

my $dbh = DBI->connect(...) ...

store the values away

$orig{$_} = $dbh->{$_} for @attrs;
do local modifications
$dbh->{LongReadlLen} = 40;
$dbh->{PrintError} = 1;

do something with the database handle
...

now restore the values

$dbh->{$_} = $orig{$ } for @attrs;
Another thing to remember is that with some database servers it’s possible to access
more than one database using the same database connection. MySQL is one of those
servers. It allows you to use a fully qualified table specification notation. So if there is
a database foo with a table test and a database bar with its own table test, you can
always use:

SELECT * FROM foo.test ...
or:
SELECT * FROM bar.test ...

No matter what database you have used in the database name string in the connect()
call (e.g., DBI:mysql:foo:localhost), you can still access both tables by using a fully
qualified syntax.

Alternatively, you can switch databases with USE foo and USE bar, but this approach
seems less convenient, and therefore error-prone.

Cannot find the DBI handler

You must use DBI->connect() as in normal DBI usage to get your $dbh database han-
dle. Using Apache: :DBI does not eliminate the need to write proper DBI code. As the
Apache: :DBI manpage states, you should program as if you are not using Apache: :DBI
at all. Apache::DBI will override the DBI methods where necessary and return your
cached connection. Any disconnect () calls will just be ignored.

The morning bug

The SQL server keeps a connection to the client open for a limited period of time. In
the early days of Apache::DBI, everyone was bitten by the so-called morning bug—

576 | Chapter20: Relational Databases and mod_perl

- ad

é ,ch20.25319 Page 577 Thursday, November 18, 2004 12:45 PM

every morning the first user to use the site received a “No Data Returned” message,
but after that everything worked fine.

The error was caused by Apache::DBI returning an invalid connection handle (the
server had closed it because of a timeout), and the script was dying on that error. The
ping() method was introduced to solve this problem, but it didn’t work properly
until Apache::DBI Version 0.82 was released. In that version and after, ping() was
called inside an eval block, which resolved the problem.

It’s still possible that some DBD:: drivers don’t have the ping() method imple-
mented. The Apache: :DBI manpage explains how to write it.

Another solution is to increase the timeout parameter when starting the database
server. We usually start the MySQL server with the script safe_mysqld, so we modi-
fied it to use this option:

nohup $ledir/mysqld [snipped other options] -0 wait_timeout=172800

The timeout value that we use is 172,800 seconds, or 48 hours. This change solves
the problem, but the ping() method works properly in DBD: :mysqgl as well.

Apache:DBI does not work

If Apache: :DBI doesn’t work, first make sure that you have it installed. Then make
sure that you configured mod_perl with either:

PERL_CHILD INIT=1 PERL_STACKED HANDLERS=1
or:
EVERYTHING=1

Turn on debug mode using the $Apache: :DBI: :DEBUG variable.

Skipping connection cache during server startup
Does your error_log look like this?

10169 Apache::DBI PerlChildInitHandler

10169 Apache::DBI skipping connection cache during server startup
Database handle destroyed without explicit disconnect at
/usr/1ib/perl5/site_perl/5.6.1/Apache/DBI.pm line 29.

If so, you are trying to open a database connection in the parent httpd process. If you
do, the children will each get a copy of this handle, causing clashes when the handle
is used by two processes at the same time. Each child must have its own unique con-
nection handle.

To avoid this problem, Apache: :DBI checks whether it is called during server startup.
If so, the module skips the connection cache and returns immediately without a

database handle.

You must use the Apache: :DBI->connect_on_init() method (see the next section) in
the startup file to preopen a connection before the child processes are spawned.

Persistent Database Connections with Apache:DBI | 577

4~ ~4]e

é ,ch20.25319 Page 578 Thursday, November 18, 2004 12:45 PM

Improving Performance

Let’s now talk about various techniques that allow you to boost the speed of applica-
tions that work with relational databases. A whole book could be devoted to this
topic, so here we will concentrate on the techniques that apply specifically to mod_
perl servers.

Preopening DBI Connections

If you are using Apache: :DBI and you want to make sure that a database connection
will already be open when your code is first executed within each child process after
a server restart, you should use the connect_on_init() method in the startup file to
preopen every connection that you are going to use. For example:

Apache: :DBI->connect_on_init(
"DBI:mysql:test:localhost", "my username", "my passwd",

PrintError => 1, # warn() on errors
RaiseError => 0, # don't die on error
AutoCommit => 1, # commit executes immediately

}
)
For this method to work, you need to make sure that you have built mod_perl with
PERL_CHILD INIT=1 or EVERYTHING=1

Be warned, though, that if you call connect_on_init() and your database is down,
Apache children will be delayed at server startup, trying to connect. They won’t
begin serving requests until either they are connected or the connection attempt fails.
Depending on your DBD driver, this can take several minutes!

Improving Speed by Skipping ping()

If you use Apache: :DBI and want to save a little bit of time, you can change how often
the ping() method is called. The following setting in a startup file:

Apache: :DBI->setPingTimeOut($data_source, $timeout)

will change this behavior. If the value of $timeout is 0, Apache:DBI will validate the
database connection using the ping() method for every database access. This is the
default. Setting $timeout to a negative value will deactivate the validation of the data-
base handle. This can be used for drivers that do not implement the ping() method
(but it’s generally a bad idea, because you don’t know if your database handle really
works). Setting $timeout to a positive value will ping the database on access only if
the previous access was more than $timeout seconds earlier.

$data_source is the same as in the connect() method (e.g., DBI:mysql:...).

578 | (Chapter20: Relational Databases and mod_perl

- ad

é ,ch20.25319 Page 579 Thursday, November 18, 2004 12:45 PM

Efficient Record-Retrieval Techniques

When working with a relational database, you’ll often encounter the need to read the
retrieved set of records into your program, then format and print them to the
browser.

Assuming that you’re already connected to the database, let’s consider the following
code prototype:

my $query = "SELECT id,fname,lname FROM test WHERE id < 10";
my $sth = $dbh->prepare($query);
$sth->execute;

my @results = ();
while (my @row_ary = $sth->fetchrow array) {
push @results, [transform(@row ary)];

}
print the output using the the data returned from the DB

In this example, the httpd process will grow by the size of the variables that have
been allocated for the records that matched the query. Remember that to get the
total amount of extra memory required by this technique, this growth should be
multiplied by the number of child processes that your server runs—which is proba-
bly not a constant.

A better approach is not to accumulate the records, but rather to print them as they
are fetched from the DB. You can use the methods $sth->bind _columns() and $sth->
fetchrow arrayref() (aliased to $sth->fetch()) to fetch the data in the fastest possi-
ble way. Example 20-1 prints an HTML table with matched data. Now the only
additional memory consumed is for an @cols array to hold temporary row values.

Example 20-1. bind_cols.pl

my $query = "SELECT id,fname,lname FROM test WHERE id < 10";
my @fields = gqw(id fname lname);

create a list of cols values
my @cols = ();
@cols[o..$#fields] = ();

$sth = $dbh->prepare($query);
$sth->execute;

Bind perl variables to columns.
$sth->bind_columns(undef, \(@cols));
print "<table>";
print '<tr bgcolor="grey">',

map("<th>$ </th>", @fields), "</tr>";
while ($sth->fetch) {

print "<tr>",

map("<td>$ </td>", @cols), "</tr>";

}
print "</table>";

Improving Performance | 579

4~ ~4]e

é ,ch20.25319 Page 580 Thursday, November 18, 2004 12:45 PM

*

Note that this approach doesn’t tell you how many records have been matched. The
workaround is to run an identical query before the code above, using SELECT
count(*)... instead of SELECT * ... to get the number of matched records:

my $query = "SELECT count(*) FROM test WHERE id < 10";
This should be much faster, since you can remove any SORT BY and similar attributes.

You might think that the DBI method $sth->rows will tell you how many records will
be returned, but unfortunately it will not. You can rely on a row count only after a do
(for some specific operations, such as update and delete), after a non-select execute,
or after fetching all the rows of a select statement.

For select statements, it is generally not possible to know how many rows will be
returned except by fetching them all. Some DBD drivers will return the number of
rows the application has fetched so far, but others may return -1 until all rows have
been fetched. Thus, use of the rows method with select statements is not recom-
mended.

mysql_use_result Versus mysql_store_result Attributes

Many mod_perl developers use MySQL as their preferred relational database server
because of its speed. Depending on the situation, it may be possible to change the
way in which the DBD::mysql driver delivers data. The two attributes mysql use_
result and mysql_store result influence the speed and size of the processes.

You can tell the DBD: :mysql driver to change the default behavior before you start to
fetch the results:

my $sth = $dbh->prepare($query);

$sth->{"mysql_use result"} = 1;
This forces the driver to use mysql use result rather than mysql store result. The
former is faster and uses less memory, but it tends to block other processes, which is
why mysql _store result is the default.

Think about it in client/server terms. When you ask the server to spoon-feed you the
data as you use it, the server process must buffer the data, tie up that thread, and
possibly keep database locks open for a long time. So if you read a row of data and
ponder it for a while, the tables you have locked are still locked, and the server is
busy talking to you every so often. That is the situation with mysql_use_result.

On the other hand, if you just suck down the whole data set to the client, then the
server is free to serve other requests. This improves parallelism, since rather than
blocking each other by doing frequent I/O, the server and client are working at the
same time. That is the situation with mysql_store result.

As the MySQL manual suggests, you should not use mysql use result if you are
doing a lot of processing for each row on the client side. This can tie up the server
and prevent other threads from updating the tables.

580 | Chapter20: Relational Databases and mod_perl

%

ﬁ

*@%

é ,ch20.25319 Page 581 Thursday, November 18, 2004 12:45 PM

*

If you are using some other DBD driver, check its documentation to see if it provides
the flexibility of DBD: :mysql in this regard.

Running Two or More Relational Databases

Sometimes you end up running many databases on the same machine. These might
have very different needs. For example, one may handle user sessions (updated fre-
quently but with tiny amounts of data), and another may contain large sets of data
that are hardly ever updated. You might be able to improve performance by running
two differently tuned database servers on one machine. The frequently updated data-
base can gain a lot from fast disk access, whereas the database with mostly static data
could benefit from lots of caching.

Caching prepare() Statements

You can also benefit from persistent connections by replacing prepare() with
prepare_cached(). That way you will always be sure that you have a good statement
handle and you will get some caching benefit. The downside is that you are going to
pay for DBI to parse your SQL and do a cache lookup every time you call prepare_
cached('). This will give a big performance boost to database servers that execute
prepare() quite slowly (e.g., Oracle), but it might add an unnecessary overhead with
servers such as MySQL that do this operation very quickly.

Be warned that some databases (e.g., PostgreSQL and Sybase) don’t support caches
of prepared plans. With Sybase you could open multiple connections to achieve the
same result, but this is at the risk of getting deadlocks, depending on what you are
trying to do!

Another pitfall to watch out for lies in the fact that prepare_cached() actually gives
you a reference to the same cached statement handle, not just a similar copy. So you
can’t do this:

my $sthi
my $sth2

$dbh->prepare_cached('SELECT name FROM table WHERE id=?");
$dbh->prepare_cached('SELECT name FROM table WHERE id=?");

because $sth1 and $sth2 are now the same object! If you try to use them indepen-
dently, your code will fail.

Make sure to read the DBI manpage for the complete documentation of this method
and the latest updates.

DBI Debug Techniques

Sometimes the code that talks to the database server doesn’t seem to work. It’s
important to know how to debug this code at the DBI level. Here is how this debug-
ging can be accomplished.

DBI Debug Techniques | 581

%

ﬁ

*@%

é ,ch20.25319 Page 582 Thursday, November 18, 2004 12:45 PM

*

To log a trace of DBI statement execution, you must set the DBI_TRACE environment
variable. The PerlSetEnv DBI_TRACE directive must appear before you load Apache::
DBI and DBI.

For example, if you use Apache: :DBI, modify your httpd.conf file with:

PerlSetEnv DBI_TRACE "3=~/tmp/dbitrace.log"
PerIModule Apache::DBI

Replace 3 with the trace level you want. The traces from each request will be
appended to /tmp/dbitrace.log. Note that the logs will probably be interleaved if
requests are processed concurrently.

Within your code, you can control trace generation with the trace() method:

DBI->trace($trace level)
DBI->trace($trace level, $trace filename)

DBI trace information can be enabled for all handles using this DBI class method. To

enable trace information for a specific handle, use the similar $dbh->trace method.

Using the trace option with a $dbh or $sth handle is useful to limit the trace informa-
tion to the specific bit of code that you are debugging.

The trace levels are:

0 Trace disabled

1 Trace DBI method calls returning with results

2 Trace method entry with parameters and exit with results
3

As above, adding some high-level information from the driver and also adding
some internal information from the DBI

4 As above, adding more detailed information from the driver and also including
DBI mutex information when using threaded Perl

5+ As above, but with more and more obscure information

References

* “Introduction to Structured Query Language”: http://web.archive.org/web/
20011116021648/http://w3.one.net/~jhoffman/sqltut.htm

* “SQL for Web Nerds,” by Philip Greenspun: hitp://philip.greenspun.com/sql/
* DBl-related information: http://dbi.perl.org/
* Programming the Perl DBI, by Alligator Descartes and Tim Bunce (O’Reilly)

* “DBI Examples and Performance Tuning,” by Jeffrey Baker: http://www.
saturn5.com/~jwb/dbi-examples.html

* SQL Fundamentals, by John J Patrick (Prentice Hall)
* SQL in a Nutshell, by Kevin Kline with Daniel Kline (O’Reilly)

582 | (Chapter20: Relational Databases and mod_perl

4~ 4

*@%

