
This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

555

Chapter 19 CHAPTER 19

DBM and mod_perl

Some of the earliest databases implemented on Unix were Database Management
(DBM) files, and many are still in use today. As of this writing, the Berkeley DB is the
most powerful DBM implementation. Berkeley DB is available at http://www.
sleepycat.com/. If you need a light database with an easy API, using simple key-value
pairs to store and manipulate a relatively small number of records, DBM is the solu-
tion that you should consider first.

With DBM, it is rare to read the whole database into memory. Combine this feature
with the use of smart storage techniques, and DBM files can be manipulated much
faster than flat files. Flat-file databases can be very slow when the number of records
starts to grow into the thousands, especially for insert, update, and delete opera-
tions. Sort algorithms on flat files can also be very time-consuming.

The maximum practical size of a DBM database depends on many factors, such as
your data, your hardware, and the desired response times. But as a rough guide, con-
sider 5,000 to 10,000 records to be reasonable.

We will talk mostly about Berkeley DB Version 1.x, as it provides the best function-
ality while having good speed and almost no limitations. Other implementations
might be faster in some cases, but they are limited either in the length of the maxi-
mum value or the total number of records.

There are a number of Perl interfaces to the major DBM implementations, such as
DB_File, NDBM_File, ODBM_File, GDBM_File, and SDBM_File. The original Perl module
for Berkeley DB was DB_File, which was written to interface with Berkeley DB Ver-
sion 1.85. The newer Perl module for Berkeley DB is BerkeleyDB, which was written
to interface with Version 2.0 and subsequent releases. Because Berkeley DB Version
2.x has a compatibility API for Version 1.85, you can (and should) build DB_File
using Version 2.x of Berkeley DB, although DB_File will still support only the 1.85
functionality.

,ch19.25158 Page 555 Thursday, November 18, 2004 12:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

556 | Chapter 19: DBM and mod_perl

Several different indexing algorithms (known also as access methods) can be used
with DBM implementations:

• The HASH access method gives an O(1) complexity (see sidebar) of search and
update, fast insert, and delete, but a slow sort (which you have to implement
yourself). HASH is used by almost all DBM implementations.

• The BTREE access method allows arbitrary key/value pairs to be stored in a
sorted, balanced binary tree. This allows you to get a sorted sequence of data
pairs in O(1) (see sidebar), at the expense of much slower insert, update, and
delete operations than is the case with HASH. BTREE is available mostly in Berkeley
DB.

• The RECNO access method is more complicated, and enables both fixed-length
and variable-length flat text files to be manipulated using the same key/value
pair interface as in HASH and BTREE. In this case the key will consist of a record
(line) number. RECNO is available mostly in Berkeley DB.

• The QUEUE access method stores fixed-length records with logical record num-
bers as keys. It is designed for fast inserts at the tail and has a special cursor-
consume operation that deletes and returns a record from the head of the queue.
The QUEUE access method uses record-level locking. QUEUE is available only in Ber-
keley DB Version 3.0 and higher.

Most often you will want to use the HASH method, but there are many considerations
and your choice may be dictated by your application.

In recent years, DBM databases have been extended to allow you to store more com-
plex values, including data structures. The MLDBM module can store and restore the
whole symbol table of your script, including arrays and hashes.

It is important to note that you cannot simply switch a DBM file from one storage
algorithm to another. The only way to change the algorithm is to copy all the records

Big-O Notation
In math, complexity is expressed using big-O notation. For a problem of size N:

• A constant-time method is “order 1”: O(1)

• A linear-time method is “order N”: O(N)

• A quadratic-time method is “order N squared”: O(N2)

For example, a lookup action in a properly implemented hash of size N with random
data has a complexity of O(1), because the item is located almost immediately after its
hash value is calculated. However, the same action in the list of N items has a complex-
ity of O(N), since on average you have to go through almost all the items in the list
before you find what you need.

,ch19.25158 Page 556 Thursday, November 18, 2004 12:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

mod_perl and DBM | 557

one by one into a new DBM file, initialized according to a desired access method.
You can use a script like the one shown in Example 19-1.

Note that some DBM implementations come with other conversion utilities as well.

mod_perl and DBM
Where does mod_perl fit into the picture? If you need read-only access to a DBM file
in your mod_perl code, the operation is much faster if you keep the DBM file open

Example 19-1. btree2hash.pl

#!/usr/bin/perl -w

#
This script takes as its parameters a list of Berkeley DB
file(s) which are stored with the DB_BTREE algorithm. It
will back them up using the .bak extension and create
instead DBMs with the same records but stored using the
DB_HASH algorithm.
#
Usage: btree2hash.pl filename(s)

use strict;
use DB_File;
use Fcntl;

@ARGV checks
die "Usage: btree2hash.pl filename(s))\n" unless @ARGV;

for my $filename (@ARGV) {
 die "Can't find $filename: $!"
 unless -e $filename and -r _;

 # First back up the file
 rename "$filename", "$filename.btree"
 or die "can't rename $filename with $filename.btree: $!";

 # tie both DBs (db_hash is a fresh one!)
 tie my %btree , 'DB_File',"$filename.btree", O_RDWR|O_CREAT,
 0660, $DB_BTREE or die "Can't tie $filename.btree: $!";
 tie my %hash , 'DB_File',"$filename" , O_RDWR|O_CREAT,
 0660, $DB_HASH or die "Can't tie $filename: $!";

 # copy DB
 %hash = %btree;

 # untie
 untie %btree;
 untie %hash;
}

,ch19.25158 Page 557 Thursday, November 18, 2004 12:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

558 | Chapter 19: DBM and mod_perl

(tied) all the time and therefore ready to be used. We will see an example of this in a
moment. This will work with dynamic (read/write) database accesses as well, but
you need to use locking and data flushing to avoid data corruption.

It’s possible that a process will die, for various reasons. There are a few conse-
quences of this event.

If the program has been using external file locking and the lock is based on the exist-
ence of the lock file, the code might be aborted before it has a chance to remove the
file. Therefore, the next process that tries to get a lock will wait indefinitely, since the
lock file is dead and no one can remove it without manual intervention. Until this
lock file is removed, services relying on this lock will stay deactivated. The requests
will queue up, and at some point the whole service will become useless as all the pro-
cesses wait for the lock file. Therefore, this locking technique is not recommended.
Instead, an advisory flock() method should be used. With this method, when a pro-
cess dies, the lock file will be unlocked by the operating system, no matter what.

Another issue lies in the fact that if the DBM files are modified, they have to be prop-
erly closed to ensure the integrity of the data in the database. This requires a flush-
ing of the DBM buffers, or just untying of the database. In case the code flow is
aborted before the database is flushed to disk, use Perl’s END block to handle the
unexpected situations, like so:

END { my_dbm_flush() }

Remember that under mod_perl, this will work on each request only for END blocks
declared in scripts running under Apache::Registry and similar handlers. Other Perl
handlers need to use the $r->register_cleanup() method:

$r->register_cleanup(\&my_dbm_flush);

as explained in Chapter 6.

As a rule, your application should be tested very thoroughly before you put it into
production to handle important data.

Resource Locking
Database locking is required if more than one process will try to modify the data. In
an environment in which there are both reading and writing processes, the reading
processes should use locking as well, since it’s possible for another process to mod-
ify the resource at the same moment, in which case the reading process gets cor-
rupted data.

We distinguish between shared-access and exclusive-access locks. Before doing an
operation on the DBM file, an exclusive lock request is issued if a read/write access is
required. Otherwise, a shared lock is issued.

,ch19.25158 Page 558 Thursday, November 18, 2004 12:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Resource Locking | 559

Deadlocks
First let’s make sure that you know how processes work with the CPU. Each process
gets a tiny CPU time slice before another process takes over. Usually operating sys-
tems use a “round robin” technique to decide which processes should get CPU slices
and when. This decision is based on a simple queue, with each process that needs
CPU entering the queue at the end of it. Eventually the added process moves to the
head of the queue and receives a tiny allotment of CPU time, depending on the pro-
cessor speed and implementation (think microseconds). After this time slice, if it is
still not finished, the process moves to the end of the queue again. Figure 19-1
depicts this process. (Of course, this diagram is a simplified one; in reality various
processes have different priorities, so one process may get more CPU time slices than
others over the same period of time.)

Now let’s talk about the situation called deadlock. If two processes simultaneously
try to acquire exclusive locks on two separate resources (databases), a deadlock is
possible. Consider this example:

sub lock_foo {
 exclusive_lock('DB1');
 exclusive_lock('DB2');
}

sub lock_bar {
 exclusive_lock('DB2');
 exclusive_lock('DB1');
}

Suppose process A calls lock_foo() and process B calls lock_bar() at the same time.
Process A locks resource DB1 and process B locks resource DB2. Now suppose process
A needs to acquire a lock on DB2, and process B needs a lock on DB1. Neither of them
can proceed, since they each hold the resource needed by the other. This situation is
called a deadlock.

Using the same CPU-sharing diagram shown in Figure 19-1, let’s imagine that pro-
cess A gets an exclusive lock on DB1 at time slice 1 and process B gets an exclusive
lock on DB2 at time slice 2. Then at time slice 4, process A gets the CPU back, but it
cannot do anything because it’s waiting for the lock on DB2 to be released. The same
thing happens to process B at time slice 5. From now on, the two processes will get
the CPU, try to get the lock, fail, and wait for the next chance indefinitely.

Figure 19-1. CPU time allocation

CPU time

Process A

Process B

Process C

1 2 3 4 5 6 7

,ch19.25158 Page 559 Thursday, November 18, 2004 12:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

560 | Chapter 19: DBM and mod_perl

Deadlock wouldn’t be a problem if lock_foo() and lock_bar() were atomic, which
would mean that no other process would get access to the CPU before the whole
subroutine was completed. But this never happens, because all the running pro-
cesses get access to the CPU only for a few milliseconds or even microseconds at a
time (called a time slice). It usually takes more than one CPU time slice to accom-
plish even a very simple operation.

For the same reason, this code shouldn’t be relied on:

sub get_lock {
 sleep 1, until -e $lock_file;
 open LF, $lock_file or die $!;
 return 1;
}

The problem with this code is that the test and the action pair aren’t atomic. Even if
the -e test determines that the file doesn’t exist, nothing prevents another process
from creating the file in between the -e test and the next operation that tries to cre-
ate it. Later we will see how this problem can be resolved.

Exclusive Locking Starvation
If a shared lock request is issued, it is granted immediately if the file is not locked or
has another shared lock on it. If the file has an exclusive lock on it, the shared lock
request is granted as soon as that lock is removed. The lock status becomes SHARED
on success.

If an exclusive lock is requested, it is granted as soon as the file becomes unlocked.
The lock status becomes EXCLUSIVE on success.

If the DB has a shared lock on it, a process that makes an exclusive lock request will
poll until there are no reading or writing processes left. Lots of processes can success-
fully read the file, since they do not block each other. This means that a process that
wants to write to the file may never get a chance to squeeze in, since it needs to
obtain an exclusive lock.

Figure 19-2 represents a possible scenario in which everybody can read but no one
can write. (“pX” represents different processes running at different times, all acquir-
ing shared locks on the DBM file.)

Figure 19-2. Overlapping shared locks prevent an exclusive lock

p1
p2

p3
p4

p1
p2

p3

,ch19.25158 Page 560 Thursday, November 18, 2004 12:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Flawed Locking Methods | 561

The result is a starving process that will time out the request, which will fail to
update the DB. Ken Williams solved this problem with his Tie::DB_Lock module, dis-
cussed later in this chapter.

There are several locking wrappers for DB_File on CPAN right now. Each one imple-
ments locking differently and has different goals in mind. It is worth knowing the dif-
ferences between them, so that you can pick the right one for your application.

Flawed Locking Methods
The suggested locking methods in the first and second editions of the book Program-
ming Perl (O’Reilly) and the DB_File manpage (before Version 1.72, fixed in 1.73) are
flawed. If you use them in an environment where more than one process can modify
the DBM file, it can be corrupted. The following is an explanation of why this happens.

You cannot use a tied file’s file handle for locking, since you get the file handle after
the file has already been tied. It’s too late to lock. The problem is that the database
file is locked after it is opened. When the database is opened, the first 4 KB (for the
Berkeley DB library, at least) are read and then cached in memory. Therefore, a pro-
cess can open the database file, cache the first 4 KB, and then block while another
process writes to the file. If the second process modifies the first 4 KB of the file,
when the original process gets the lock it now has an inconsistent view of the data-
base. If it writes using this view it may easily corrupt the database on disk.

This problem can be difficult to trace because it does not cause corruption every time
a process has to wait for a lock. One can do quite a bit of writing to a database file
without actually changing the first 4 KB. But once you suspect this problem, you can
easily reproduce it by making your program modify the records in the first 4 KB of
the DBM file.

It’s better to resort to using the standard modules for locking than to try to invent
your own.

If your DBM file is used only in the read-only mode, generally there is no need for
locking at all. If you access the DBM file in read/write mode, the safest method is to
tie the DBM file after acquiring an external lock and untie it before the lock is
released. So to access the file in shared mode (FLOCK_SH*), follow this pseudocode:

flock $fh, FLOCK_SH <= == == start critical section
tie...
read...
untie...
flock $fh, FLOCK_UN <= == == end critical section

* The FLOCK_* constants are defined in the Fcntl module; FLOCK_SH for shared, FLOCK_EX for exclusive, and
FLOCK_UN for unlock.

,ch19.25158 Page 561 Thursday, November 18, 2004 12:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

562 | Chapter 19: DBM and mod_perl

Similarly for the exclusive (EX) write access:

flock FLOCK_EX <= == == start critical section
tie...
write...
sync...
untie...
flock FLOCK_UN <= == == end critical section

You might want to save a few tie()/untie() calls if the same request accesses the
DBM file more than once. Be careful, though. Based on the caching effect explained
above, a process can perform an atomic downgrade of an exclusive lock to a shared
one without retying the file:

flock FLOCK_EX <= == == start critical section
tie...
write...
sync...
 <= == == end critical section
flock FLOCK_SH <= == == start critical section
read...
untie...
flock FLOCK_UN <= == == end critical section

because it has the updated data in its cache. By atomic, we mean it’s ensured that the
lock status gets changed without any other process getting exclusive access in
between.

If you can ensure that one process safely upgrades a shared lock to an exclusive lock,
you can save the overhead of doing the extra tie() and untie(). But this operation
might lead to a deadlock if two processes try to upgrade from shared to exclusive
locks at the same time. Remember that in order to acquire an exclusive lock, all other
processes need to release all locks. If your OS’s locking implementation resolves this
deadlock by denying one of the upgrade requests, make sure your program handles
that appropriately. The process that was denied has to untie the DBM file and then
ask for an exclusive lock.

A DBM file always has to be untied before the lock is released (unless you do an
atomic downgrade from exclusive to shared, as we have just explained). Remember
that if at any given moment a process wants to lock and access the DBM file, it has to
retie this file if it was tied already. If this is not done, the integrity of the DBM file is
not ensured.

To conclude, the safest method of reading from a DBM file is to lock the file before
tying it, untie it before releasing the lock, and, in the case of writing, call sync()
before untying it.

,ch19.25158 Page 562 Thursday, November 18, 2004 12:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Tie::DB_Lock | 563

Locking Wrappers Overview
Here are the pros and cons of the DBM file-locking wrappers available from CPAN:

Tie::DB_Lock
A DB_File wrapper that creates copies of the DBM file for read access, so that
you have a kind of multiversioning concurrent read system. However, updates
are still serial. After each update, the read-only copies of the DBM file are recre-
ated. Use this wrapper in situations where reads may be very lengthy and there-
fore the write starvation problem may occur. On the other hand, if you have big
DBM files, it may create a big load on the system if the updates are quite fre-
quent. This module is discussed in the next section.

Tie::DB_FileLock
A DB_File wrapper that has the ability to lock and unlock the database while it is
being used. Avoids the tie-before-flock problem by simply retying the database
when you get or drop a lock. Because of the flexibility in dropping and reacquir-
ing the lock in the middle of a session, this can be used in a system that will
work with long updates and/or reads. Refer to the Tie::DB_FileLock manpage
for more information.

DB_File::Lock
An extremely lightweight DB_File wrapper that simply flocks an external lock file
before tying the database and drops the lock after untying. This allows you to
use the same lock file for multiple databases to avoid deadlock problems, if
desired. Use this for databases where updates and reads are quick, and simple
flock() locking semantics are enough. Refer to the DB_File::Lock manpage for
more information.

On some operating systems (FreeBSD, for example), it is possible to lock on tie:

tie my %t, 'DB_File', $DBM_FILE, O_RDWR | O_EXLOCK, 0664;

and release the lock only by untying the file. Check if the O_EXLOCK flag is available on
your operating system before you try to use this method!

Tie::DB_Lock
Tie::DB_Lock ties hashes to databases using shared and exclusive locks. This mod-
ule, written by Ken Williams, solves the problems discussed earlier.

The main difference with this module is that Tie::DB_Lock copies a DBM file on read.
Reading processes do not have to keep the file locked while they read it, and writing
processes can still access the file while others are reading. This works best when you
have lots of long-duration reading processes and a few short bursts of writing.

,ch19.25158 Page 563 Thursday, November 18, 2004 12:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

564 | Chapter 19: DBM and mod_perl

The drawback of this module is the heavy I/O performed when every reader makes a
fresh copy of the DB. With big DBM files this can be quite a disadvantage and can
slow down the server considerably.

An alternative would be to have one copy of the DBM image shared by all the read-
ing processes. This would cut the number of files that are copied and put the respon-
sibility of copying the read-only file on the writer, not the reader. However, some
care would be required to make sure that readers are not disturbed when a new read-
only copy is put into place.

Examples
Let’s look at a few examples that will demonstrate the theory presented at the begin-
ning of the chapter.

tie()-ing Once and Forever
If you know that your code accesses the DBM file in read-only mode and you want to
gain the maximum data-retrieval speed, you should tie the DBM file during server
startup and register code in the child initialization stage that will tie the DBM file
when the child process is spawned.

Consider the small test module in Example 19-2.

This module imports two symbols from the Fcntl package that we will use to tie the
DBM file. The first one is O_RDONLY, as we want the file to be opened only for read-
ing. It is important to note that in the case of the tie() interface, nothing prevents
you from updating the DBM file, even if the file was tied with the O_RDONLY flag. The
second flag, O_CREAT, is used just in case the DBM file wasn’t found where it was
expected—in this case, an empty file will be created instead, since otherwise tie()
will fail and the code execution will be aborted.

Example 19-2. Book/DBMCache.pm

package Book::DBMCache;

use DB_File;
use Fcntl qw(O_RDONLY O_CREAT);

use vars qw(%dbm);

sub init {
 my $filename = shift;
 tie %dbm, 'DB_File', $filename, O_RDONLY|O_CREAT,
 0660, $DB_BTREE or die "Can't tie $filename: $!";
}
1;

,ch19.25158 Page 564 Thursday, November 18, 2004 12:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Examples | 565

The module specifies a global variable, %dbm, which we need to be global so that we
can access it directly from outside of the Book::DBMCache module. Alternatively, we
could define this variable as lexically scoped to this module and write an accessor
(method), which would make the code cleaner. However, this accessor would be
called every time we wanted to read some value.

When Book::DBMCache::init() is called with a path to the DBM file as its argument,
the global variable %dbm is tied to this file. We want the tie operation to happen
before the first request is made, so we do it in the ChildInitHandler code executed
from startup.pl:

use Book::DBMCache;
Apache->push_handlers(PerlChildInitHandler => sub {
 Book::DBMCache::init("/tmp/foo.db");
 });

Assuming /tmp/foo.db is already populated with data, we can now write the test
script shown in Example 19-3.

When this is executed as an Apache::Registry script (assuming the DBM file was
populated with the foo, bar key/value pair), we will see the following output:

The value of foo: [bar]

There’s an easy way to guarantee that a tied hash is read-only: use a subclass of the
tie module you’re using that prevents writing. For example, you can subclass DB_File
as follows:

package DB_File::ReadOnly;

use strict;
require DB_File;
$DB_File::ReadOnly::ISA = qw(DB_File);

sub STORE { }
sub DELETE { }
sub CLEAR { }

1;

Example 19-3. test_dbm.pl

use Book::DBMCache;
use strict;

my $r = shift;
$r->send_http_header("text/plain");

my $foo = exists $Book::DBMCache::dbm{foo} ? $Book::DBMCache::dbm{foo} : '';
print "The value of foo: [$foo]";

,ch19.25158 Page 565 Thursday, November 18, 2004 12:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

566 | Chapter 19: DBM and mod_perl

As you can see, the methods of the tie() interface that can alter the DBM file are
overriden with methods that do nothing. Of course, you may want to use warn() or
die() inside these methods, depending on how you want to flag writes. Any
attempts to write probably should be considered serious problems.

Now you can use DB_File::ReadOnly just like you were using DB_File before, but you
can be sure that the DBM file won’t be modified through this interface.

Read/Write Access
This simple example will show you how to use the DBM file when you want to be
able to safely modify it in addition to just reading from it. As mentioned earlier, we
are running in a multiprocess environment in which more than one process might
attempt to write to the file at the same time. Therefore, we need to have a lock on the
DBM file before we can access it, even when doing only a read operation—we want
to make sure that the retrieved data is completely valid, which might not be the case
if someone is writing to the same record at the time of our read. We are going to use
the DB_File::Lock module from CPAN to perform the actual locking.

The simple script shown in Example 19-4 imports the O_RDWR and O_CREAT symbols
from the Fcntl module, loads the DB_File::Lock module, and sends the HTTP
header as usual.

The next step is to tie the existing /tmp/foo.db file, or create a new one if it doesn’t
already exist. Notice that the last argument for the tie is 'write', which tells DB_File::
Lock to obtain an exclusive (write) lock before moving on. Once the exclusive lock is

Example 19-4. read_write_lock.pl

use strict;
use DB_File::Lock;
use Fcntl qw(O_RDWR O_CREAT);

my $r = shift;
$r->send_http_header("text/plain");

my $dbfile = "/tmp/foo.db";
tie my %dbm, 'DB_File::Lock', $dbfile, O_RDWR|O_CREAT,
 0600, $DB_HASH, 'write';
assign a random value
$dbm{foo} = ('a'..'z')[int rand(26)];
untie %dbm;

read the assigned value
tie %dbm, 'DB_File::Lock', $dbfile, O_RDWR|O_CREAT,
 0600, $DB_HASH, 'read';
my $foo = exists $dbm{foo} ? $dbm{foo} : 'undefined';
untie %dbm;

print "The value of foo: [$foo]";

,ch19.25158 Page 566 Thursday, November 18, 2004 12:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Examples | 567

acquired and the DBM file is tied, the code assigns a random letter as a value and
saves the change by calling untie(), which unlocks the DBM and closes it. It’s impor-
tant to stress here that in our example the section of code between the calls to tie()
and untie() is called a critical section, because while we are inside of it, no other pro-
cess can read from or write to the DBM file. Therefore, it’s important to keep it the
execution time of this section as short as possible.

The next section is similar to the first one, but this time we ask for a shared (read)
lock, as we only want to read the value from the DBM file. Once the value is read,
it’s printed. Since the letter was picked randomly, you will see something like this:

The value of foo: [d]

then this (when reloading again):

The value of foo: [z]

and so on.

Based on this example you can build more evolved code, and of course you may
choose to use other locking wrapper modules, as discussed earlier.

Storing Complex Data Structures
As mentioned earlier, you can use the MLDBM module to store complex data structures
in the DBM file (which apparently accepts only a scalar as a single value).
Example 19-5 shows how to do this.

Example 19-5. mldbm.pl

use strict;
use MLDBM qw(DB_File);
use DB_File;
use Data::Dumper ();
use Fcntl qw(O_RDWR O_CREAT);

my $r = shift;
$r->send_http_header("text/plain");

my $rh = {
 bar => ['a'..'c'],
 tar => { map {$_ => $_**2 } 1..4 },
 };

my $dbfile = "/tmp/foo.db";
tie my %dbm, 'MLDBM', $dbfile, O_RDWR|O_CREAT,
 0600, $DB_HASH or die $!;
assign a reference to a Perl datastructure
$dbm{foo} = $rh;
untie %dbm;

,ch19.25158 Page 567 Thursday, November 18, 2004 12:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

568 | Chapter 19: DBM and mod_perl

As you can see, this example is very similar to the normal use of DB_File; we just use
MLDBM instead, and tell it to use DB_File as an underlying DBM implementation. You
can choose any other available implementation instead. If you don’t specify one,
SDBM_File is used.

The script creates a complicated nested data structure and stores it in the $rh scalar.
Then we open the database and store this value as usual.

When we want to retrieve the stored value, we do pretty much the same thing as
before. The script uses the Data::Dumper::Dumper method to print out the nested data
structure. Here is what it prints:

$VAR1 = {
 'bar' => [
 'a',
 'b',
 'c'
],
 'tar' => {
 '1' => '1',
 '2' => '4',
 '3' => '9',
 '4' => '16'
 }
 };

That’s exactly what we inserted into the DBM file.

There is one important note, though. If you want to modify a value that is a refer-
ence to a data structure, you cannot modify it directly. You have to retrieve the value,
modify it, and store it back.

For example, in the above example you cannot do:

tie my %dbm, 'MLDBM', $dbfile, O_RDWR|O_CREAT,
 0600, $DB_HASH or die $!;
update the existing key
$dbm{foo}->{bar} = ['a'..'z']; # this doesn't work
untie %dbm;

if the key bar existed before. Instead, you should do the following:

tie my %dbm, 'MLDBM', $dbfile, O_RDWR|O_CREAT,
 0600, $DB_HASH or die $!;
update the existing key

read the assigned value
tie %dbm, 'MLDBM', $dbfile, O_RDWR|O_CREAT,
 0600, $DB_HASH or die $!;
my $foo = exists $dbm{foo} ? $dbm{foo} : 'undefined';
untie %dbm;

print Data::Dumper::Dumper($foo);

Example 19-5. mldbm.pl (continued)

,ch19.25158 Page 568 Thursday, November 18, 2004 12:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

References | 569

my $tmp = $dbm{foo};
$tmp->{bar} = ['a'..'z'];
$dbm{foo} = $tmp; # this works
untie %dbm;

This limitation exists because the perl TIEHASH interface currently has no support for
multidimensional ties.

By default, MLDBM uses Data::Dumper to serialize the nested data structures. You may
want to use the FreezeThaw or Storable serializer instead. In fact, Storable is the pre-
ferred one. To use Storable in our example, you should do:

use MLDBM qw(DB_File Storable);

at the beginning of the script.

Refer to the MLDBM manpage to find out more information about it.

References
• Chapter 14 in Perl Cookbook, by Tom Christiansen and Nathan Torkington

(O’Reilly)

• Chapter 17 in Learning Perl, Second Edition, by Randal L. Schwartz and Tom
Christiansen (O’Reilly)

• Chapter 2 in Programming the Perl DBI, by Alligator Descartes and Tim Bunce
(O’Reilly)

• The Berkeley DB web site: http://www.sleepycat.com/

,ch19.25158 Page 569 Thursday, November 18, 2004 12:44 PM

