
This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

543

Chapter 17 CHAPTER 17

Databases Overview

What’s a database? We can use pretty much anything as a database, as long as it
allows us to store our data and retrieve it later. There are many different kinds of
databases. Some allow us to store data and retrieve it years later; others are capable
of preserving data only while there is an electricity supply. Some databases are
designed for fast searches, others for fast insertions. Some databases are very easy to
use, while some are very complicated (you may even have to learn a whole language
to know how to operate them). There are also large price differences.

When we choose a database for our application, we first need to define the require-
ments in detail (this is known as a specification). If the application is for short-term
use, we probably aren’t going to use an expensive, advanced database. A quick-and-
dirty hack may do. If, on the other hand, we design a system for long-term use, it
makes sense to take the time to find the ideal database implementation.

Databases can be of two kinds: volatile and non-volatile. These two concepts pretty
much relate to the two kinds of computer memory: RAM-style memory, which usu-
ally loses all its contents when the electricity supply is cut off; and magnetic (or opti-
cal) memory, such as hard disks and compact discs, which can retain the information
even without power.

Volatile Databases
We use volatile databases all the time, even if we don’t think about them as real data-
bases. These databases are usually just part of the programs we run.

In-Memory Databases in a Single Process
If, for example, we want to store the number of Perl objects that exist in our pro-
gram’s data, we can use a variable as a volatile database:

package Book::ObjectCounter;
use strict;

,ch17.24881 Page 543 Thursday, November 18, 2004 12:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

544 | Chapter 17: Databases Overview

my $object_count = 0;
sub new {
 my $class = shift;
 $object_count++;
 return bless { }, $class;
}
sub DESTROY {
 $object_count--;
}

In this example, $object_count serves as a database—it stores the number of cur-
rently available objects. When a new object is created this variable increments its
value, and when an object gets destroyed the value is decremented.

Now imagine a server, such as mod_perl, where the process can run for months or
even years without quitting. Doing this kind of accounting is perfectly suited for the
purpose, for if the process quits, all objects are lost anyway, and we probably won’t
care how many of them were alive when the process terminated.

Here is another example:

$DNS_CACHE{$dns} ||= dns_resolve($dns);
print "Hostname $dns has $DNS_CACHE{$dns} IP\n";

This little code snippet takes the hostname stored in $dns and checks whether we
have the corresponding IP address cached in %DNS_CACHE. If not, it resolves it and
caches it for later reuse. At the end, it prints out both the hostname and the corre-
sponding IP address.

%DNS_CACHE satisfies our definition of a database. It’s a volatile database, since when
the program quits the data disappears. When a mod_perl process quits, the cache is
lost, but there is a good chance that we won’t regret the loss, since we might want to
cache only the latest IP addresses anyway. Now if we want to turn this cache into a
non-volatile database, we just need to tie %DNS_CACHE to a DBM file, and we will have
a permanent database. We will talk about Database Management (DBM) files in
Chapter 19.

In Chapter 18, we will show how you can benefit from this kind of in-process data-
base under mod_perl. We will also show how during a single request different han-
dlers can share data and how data can persist across many requests.

In-Memory Databases Across Multiple Processes
Sharing results is more efficient than having each child potentially waste a lot of time
generating redundant data. On the other hand, the information may not be impor-
tant enough, or have sufficient long-term value, to merit being stored on disk. In this
scenario, Inter-Process Communication (IPC) is a useful tool to have around.

,ch17.24881 Page 544 Thursday, November 18, 2004 12:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Non-Volatile Databases | 545

This topic is non-specific to mod_perl and big enough to fill several books on its
own. A non-exhaustive list of the modules to look at includes IPC::SysV, IPC::
Shareable, IPC::Semaphore, IPC::ShareLite, Apache::Session, and Cache::Cache. And
of course make sure to read the perlipc manpage. Also refer to the books listed in
the reference section at the end of this chapter.

Non-Volatile Databases
Some information is so important that you cannot afford to lose it. Consider the
name and password for authenticating users. If a person registers at a site that
charges a subscription fee, it would be unfortunate if his subscription details were
lost the next time the web server was restarted. In this case, the information must be
stored in a non-volatile way, and that usually means on disk. Several options are
available, ranging from flat files to DBM files to fully-fledged relational databases.
Which one you choose will depend on a number of factors, including:

• The size of each record and the volume of the data to be stored

• The number of concurrent accesses (to the server or even to the same data)

• Data complexity (do all the records fit into one row, or are there relations
between different kinds of record?)

• Budget (some database implementations are great but very expensive)

• Failover and backup strategies (how important it is to avoid downtime, how
soon the data must be restored in the case of a system failure)

Flat-File Databases
If we have a small amount of data, sometimes the easiest technique is to just write
this data in a text file. For example, if we have a few records with a fixed number of
fields we can store them in a file, having one record per row and separating the fields
with a delimiter. For example:

Eric|Cholet|cholet@logilune.com
Doug|MacEachern|dougm@pobox.com
Stas|Bekman|stas@stason.org

As long as we have just a few records, we can quickly insert, edit, and remove
records by reading the flat-file database line by line and adjusting things as required.
We can retrieve the fields easily by using the split function:

@fields = split /\|/, $record;

and we can put them back using join:

$record = join '|', @fields;

,ch17.24881 Page 545 Thursday, November 18, 2004 12:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

546 | Chapter 17: Databases Overview

However, we must make sure that no field uses the field separator we have chosen
(| in this case), and we must lock the file if it is to be used in a multiprocess environ-
ment where many processes may try to modify the same file simultaneously. This is
the case whether we are using mod_perl or not.

If we are using some flavor of Unix, the /etc/passwd file is a perfect example of a flat-
file database, since it has a fixed number of fields and most systems have a relatively
small number of users.* This is an example of such a file:

root:x:0:0:root:/root:/bin/tcsh
bin:x:1:1:bin:/bin:
daemon:x:2:2:daemon:/sbin:
adm:x:3:4:adm:/var/adm:
lp:x:4:7:lp:/var/spool/lpd:

: is used to separate the various fields.

Working with flat-file databases is easy and straightforward in plain Perl. There are
no special mod_perl tricks involved.

Filesystem Databases
Many people don’t realize that in some cases, the filesystem can serve perfectly well
as a database. In fact, you are probably using this kind of database every day on your
PC—for example, if you store your MP3 files categorized by genres, artists, and
albums. If we run:

panic% cd /data/mp3
panic% find .

We can see all the MP3 files that we have under /data/mp3:

./Rock/Bjork/MTV Unplugged/01 - Human Behaviour.mp3

./Rock/Bjork/MTV Unplugged/02 - One Day.mp3

./Rock/Bjork/MTV Unplugged/03 - Come To Me.mp3

...

./Rock/Bjork/Europa/01 - Prologue.mp3

./Rock/Bjork/Europa/02 - Hunter.mp3

...

./Rock/Nirvana/MTV Unplugged/01 - About A Girl.mp3

./Rock/Nirvana/MTV Unplugged/02 - Come As You Are.mp3

...

./Jazz/Herbie Hancock/Head Hunters/01 - Chameleon.mp3

./Jazz/Herbie Hancock/Head Hunters/02 - Watermelon Man.mp3

Now if we want to query what artists we have in the Rock genre, we just need to list
the files in the Rock/ directory. Once we find out that Bjork is one of the artists in the
Rock category, we can do another enquiry to find out what Bjork albums we have
bought by listing the files under the Rock/Bjork/ directory. Now if we want to see the

* Disregard the fact that the actual password is stored in /etc/shadow on modern systems.

,ch17.24881 Page 546 Thursday, November 18, 2004 12:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Non-Volatile Databases | 547

actual MP3 files from a particular album (e.g., MTV Unplugged), we list the files
under that directory.

What if we want to find all the albums that have MTV in their names? We can use ls
to give us all the albums and MP3 files:

panic% ls -l ./*/*/*MTV*

Of course, filesystem manipulation can be done from your Perl program.

Let’s look at another example. If you run a site about rock groups, you might want to
store images relating to different groups. Using the filesystem as a database is a per-
fect match. Chances are these images will be served to users via tags, so it
makes perfect sense to use the real path (DocumentRoot considerations aside) to the
image. For example:

In this example we treat ACDC as a record and cover-front.gif and cover-back.gif as
fields. This database implementation, just like the flat-file database, has no special
benefits under mod_perl, so we aren’t going to expand on the idea, but it’s worth
keeping in mind.

DBM Databases
DBM databases are very similar to flat-file databases, but if all you need is to store
the key/value pairs, they will do it much faster. Their use is much simpler, too. Perl
uses tie() to interact with DBM databases, and you work with these files as with
normal hash data structures. When you want to store a value, you just assign it to a
hash tied to the DBM database, and to retrieve some data you just read from the
hash.

A good example is session tracking: any user can connect to any of several mod_perl
processes, and each process needs to be able to retrieve the session ID from any other
process. With DBM this task is trivial. Every time a lookup is needed, tie the DBM
file, get the shared lock, and look up the session_id there. Then retrieve the data and
untie the database. Each time you want to update the session data, you tie the data-
base, acquire an exclusive lock, update the data, and untie the database. It’s proba-
bly not the fastest approach, and probably not the best one if you need to store more
than a single scalar for each record, but it works quite well.

In Chapter 20 we give some important background information about DBM files and
provide a few examples of how you can benefit from usingDBM files under mod_
perl.

,ch17.24881 Page 547 Thursday, November 18, 2004 12:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

548 | Chapter 17: Databases Overview

Relational Databases
Of course, the most advanced solution is a relational database. But even though it
provides the best solution in many cases, it’s not always the one you should pick.
You don’t need a sledgehammer to crack a nut, right?

Relational databases come in different implementations. Some are very expensive
and provide many tools and extra features that aren’t available with the cheaper and
free implementations. What’s important to keep in mind is that it’s not necessarily
the most expensive one that is the best choice in a given situation. Just as you need
to choose the right database structure, you need to choose the right relational data-
base. For example, ask yourself whether you need speed, or support for transac-
tions, or both.

It makes sense to try to write your code in such a way that if later in the course of
development you discover that your choice of relational database wasn’t the best, it
will be easy to switch to a different one.

Too Many Files
There is one thing to beware of: in some operating systems, when too many files (or
directories) are stored in a single directory, access can be sluggish. It depends on the
filesystem you are using. If you have a few files, simple linear access will be good
enough. Many filesystems employ hashing algorithms to store the i-nodes (files or
directories) of a directory. You should check your filesystem documentation to see
how it will behave under load.

If you find that you have lots of files to store and the filesystem implementation won’t
work too well for you, you can implement your own scheme by spreading the files into
an extra layer or two of subdirectories. For example, if your filenames are numbers,
you can use something like the following function:

my $dir = join "/", (split '', sprintf "%02d", $id)[0..1], $id;

So if you want to create a directory 12345, it will be converted into 1/2/12345. The
directory 12 could become 0/0/12, and 124 could become 0/1/124. If your files have a
reasonable distribution, which is often true with numerical data, you might end up
with two-llevel hashing. So if you have 10,000 directories to create, each end-level
directory will have at most about 100 subdirectories, which is probably good enough
for a fast lookup. If you are going to have many more files you may need to think about
adding more levels.

Also remember that the more levels you add, the more overhead you are adding, since
the OS has to search through all the intermediate directories that you have added. Only
do that if you really need to. If you aren’t sure, and you start with a small number of
directories, abstract the resolution of the directories so that in the future you can
switch to a hashed implementation or add more levels to the existing one.

,ch17.24881 Page 548 Thursday, November 18, 2004 12:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

References | 549

mod_perl greatly helps work with relational databases, mainly because it allows per-
sistent database connections. We’ll talk extensively about relational databases and
mod_perl in Chapter 20.

References
• Chapters 2 and 3 of the book Programming the Perl DBI, by Alligator Descartes

and Tim Bunce (O’Reilly), provide a good overview of relational and nonrela-
tional databases

• Chapter 10 of the book Advanced Perl Programming, by Sriram Srinivasan
(O’Reilly), talks about persistence

,ch17.24881 Page 549 Thursday, November 18, 2004 12:44 PM

