
This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

525

Chapter 15 CHAPTER 15

Improving Performance Through
Build Options

It’s important how you build mod_perl-enabled Apache. The build process influ-
ences the size of the httpd executable—for example, some irrelevant modules might
slow down performance.

When you build Apache, it strips the debug symbols by default, so you don’t have to
strip them yourself. For production use, you definitely shouldn’t build mod_perl
with debugging options enabled. Apache and mod_perl do not add these options
unless you explicitly require them. In Chapter 21 we talk about debug build options
in detail.

Server Size as a Function of Compiled-in
Features
You might wonder if it’s better to compile in only the required modules and mod_
perl hooks, or if it doesn’t really matter. To answer this question, let’s first make a
few compilations and compare the results.

We’ll build mod_perl starting with:

panic% perl Makefile.PL APACHE_SRC=../apache_1.3.x/src \
 DO_HTTPD=1 USE_APACI=1

and followed by one of these option groups, in turn:

• Default (no arguments)

• Minimum:
APACI_ARGS='--disable-module=env, \
 --disable-module=negotiation, \
 --disable-module=status, \
 --disable-module=info, \
 --disable-module=include, \
 --disable-module=autoindex, \
 --disable-module=dir, \
 --disable-module=cgi, \

,ch15.24591 Page 525 Thursday, November 18, 2004 12:43 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

526 | Chapter 15: Improving Performance Through Build Options

 --disable-module=asis, \
 --disable-module=imap, \
 --disable-module=userdir, \
 --disable-module=access, \
 --disable-module=auth'

• mod_perl’s EVERYTHING:
EVERYTHING=1

• mod_perl’s EVERYTHING and debug:
EVERYTHING=1 PERL_DEBUG=1

After recompiling with the arguments of each of these groups in turn, we can sum-
marize the results as follows:

Build group httpd size (bytes) Difference

Minimum 892928 + 0
Default 994316 +101388
Everything 1044432 +151504
Everything+Debug 1162100 +269172

Clearly when you strip most of the defaults, the server size is slimmer. But the sav-
ings become insignificant, because you don’t multiply the added size by the number
of child processes if your OS supports memory sharing. The parent process is a little
bigger, but it shares these memory pages with its child processes. Of course, not all
the memory will be shared, but most of it will.

This is just an example to show the maximum possible difference in size. You can’t
actually strip everything away, because there will be Apache modules and mod_perl
options that you won’t be able to work without. But as a good system administra-
tor’s rule says: “Run the absolute minimum of the applications. If you don’t know or
need something, disable it.” Following this rule to decide on the required Apache
components and disabling the unneeded default components makes you a better
Apache administrator.

mod_status and ExtendedStatus On
If you build in mod_status and you also set:

ExtendedStatus On

in httpd.conf, on every request Apache will perform two calls to gettimeofday(2) (or
times(2), depending on your operating system). This is done so that the status report
contains timing information. For highest performance, set ExtendedStatus Off
(which is the default).

,ch15.24591 Page 526 Thursday, November 18, 2004 12:43 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Perl Build Options | 527

DYNAMIC_MODULE_LIMIT Apache Build
Option
If you have no intention of using dynamically loaded modules (you probably
don’t if you’re tuning your server for every last ounce of performance), you should
add -DDYNAMIC_MODULE_LIMIT=0 when building the server. This will save
RAM that’s allocated only for supporting dynamically loaded modules.

Perl Build Options
The Perl interpreter is the brain of the mod_perl server. If you can optimize Perl into
doing things faster under mod_perl, you’ll make the whole server faster. Generally,
optimizing the Perl interpreter means enabling or disabling some build options. Let’s
look at a few important ones. (Note that you have to build Perl before you build
mod_perl-enabled Apache. If you have rebuilt the Perl interpreter, make sure to
rebuild mod_perl as well, or the changes won’t affect mod_perl.)

You can pass build options to Perl via the Configure script. To specify additional C
compiler flags, use the -Accflags=... Configure command-line option (e.g., -Accflags=-
DFOO will define the C preprocessor symbol FOO.) You can also pass additional opti-
mizer/debugger flags via -Doptimize=... (e.g., -Doptimize='-O2 -march=pentium').

Don’t enable Perl’s thread support unless you need it, because some internal data
structures are modified and/or extended under ithreads/5005threads—this may make
certain things slower and could lead to extra memory usage.

You have a choice of using the native or Perl’s own malloc() implementation. The
default choice depends on your operating system. On some OSes the native imple-
mentation might be worse than Perl’s. Unless you know which of the two is better on
yours, try both and compare the benchmarks.

To build without Perl’s malloc(), you can use the Configure command:

panic% sh Configure -Uusemymalloc

Note that:

-U = = undefine usemymalloc (= = use system malloc)
-D = = define usemymalloc (= = use Perl's malloc)

The Linux OS still defaults to system malloc(), so you might want to configure Perl
with -Dusemymalloc. Perl’s malloc() is not much of an imporovement under Linux
(it’s about a 5–10% speed improvement according to Scott Thomason, as explained
at http://www.mlug.net/mlug-list/2000/msg00701.html), but it makes a huge differ-
ence under Solaris (when using Sun’s C compiler). Be sure also to check the
README.* file corresponding to your OS in the Perl source code distribution for
specific instructions and caveats.

,ch15.24591 Page 527 Thursday, November 18, 2004 12:43 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

528 | Chapter 15: Improving Performance Through Build Options

Architecture-Specific Compile Options
When you build Apache and Perl, you can optimize the compiled applications to
take advantage of the benefits of your machine’s architecture.

Everything depends on the kind of compiler that you use, the kind of CPU(s) you
use, and your OS.

For example, if you use gcc(1), you might want to use -march=pentium if you have a
Pentium CPU, or -march=pentiumpro for PentiumPro and above.

-fomit-frame-pointer makes an extra register available but disables debugging. You
can also try these options, which have been reported to improve performance: -ffast-
math, -malign-double, -funroll-all-loops, -fno-rtti, and -fno-exceptions. See the gcc(1)
manpage for details about these.

You may also want to change the default -O2 flag to a flag with a higher number,
such as -O3. -OX (where X is a number between 1 and 6) defines a collection of vari-
ous optimization flags; the higher the number, the more flags are bundled. The gcc
manpage will tell you what flags are used for each number. Test your applications
thoroughly (and run the Perl test suite!) when you change the default optimization
flags, especially when you go beyond -O2. It’s possible that the optimization will
make the code work incorrectly and/or cause segmentation faults.

See your preferred compiler’s manpage and the resources listed in the next section
for detailed information about optimization.

References
• The GCC manual: http://gcc.gnu.org/onlinedocs/

• “Code Optimization Using the GNU C Compiler,” by Rahul U Joshi: http://
www.linuxgazette.com/issue71/joshi.html

This article describes some of the code optimization techniques used by the
GNU C Compiler, in order to give the reader a feel of what code optimization is
and how it can increase the efficiency of the generated object code.

• Using and Porting GNU CC for Version 2.8, by Richard Stallman (Free Software
Foundation). Also available online from http://www.delorie.com/gnu/docs/gcc/
gcc_toc.html and many other locations.

• Chapter 6 of the online book Securing and Optimizing Linux, RedHat Edition: A
Hands on Guide talks extensively about compiler flags. It is located at http://
www.linuxdoc.org/LDP/solrhe/Securing-Optimizing-Linux-RH-Edition-v1.3/gen-
optim.html. The whole book (available in different formats) can be found at
http://www.linuxdoc.org/guides.html#securing_linux.

• More Apache and platform-specific performance-tuning notes can be found at
http://httpd.apache.org/docs/misc/perf-tuning.html.

,ch15.24591 Page 528 Thursday, November 18, 2004 12:43 PM

