
This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

453

Chapter 13 CHAPTER 13

TMTOWTDI: Convenience and Habit
Versus Performance

TMTOWTDI (sometimes pronounced “tim toady”), an acronym for “There’s More
Than One Way To Do It,” is the main motto of Perl. In other words, you can reach
the same goal (usually a working product) by coding in many different styles, using
different modules and deploying the same modules in different ways.

However, when you come to the point where performance is the goal, you might
have to learn what’s efficient and what’s not. This may mean that you will have to
use an approach that you don’t really like, that’s less convenient, or that requires
changing your coding habits.

This section is about performance trade-offs. For almost every comparison, we will
provide the theoretical difference and then run benchmarks to support the theory.
No matter how good the theory is, it’s the numbers we get in practice that matter.

We also would like to mention that the code snippets used in the benchmarks are
meant to demonstrate the points we are making and are intended to be as short and
easy to understand as possible, rather than being real-world examples.

In the following benchmarks, unless stated differently, mod_perl is tested directly,
and the following Apache configuration has been used:

MinSpareServers 10
MaxSpareServers 20
StartServers 10
MaxClients 20
MaxRequestsPerChild 10000

Apache::Registry PerlHandler Versus Custom
PerlHandler
At some point you have to decide whether to use Apache::Registry or similar han-
dlers and stick to writing scripts only for content generation, or to write pure Perl
handlers.

,ch13.24285  Page 453  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

454 | Chapter 13: TMTOWTDI: Convenience and Habit Versus Performance

Apache::Registry maps a request to a file and generates a package and the handler( )
subroutine to run the code contained in that file. If you use a mod_perl handler
instead of Apache::Registry, you have a direct mapping from request to subroutine,
without the steps in between. The steps that Apache::Registry must go through
include:

1. Run the stat( ) system call on the script’s filename ($r->filename).

2. Check that the file exists and is executable.

3. Generate a Perl package name based on the request’s URI ($r->uri).

4. Change to the directory in which the script resides (chdir basename $r->filename).

5. Compare the file’s last-modified time to the compiled subroutine’s last modified
time as stored in memory (if it has already been compiled).

6. If modified since the last compilation or not yet compiled, compile the subroutine.

7. Change back to the previous directory (chdir $old_cwd).

If you remove these steps, you cut out some overhead, plain and simple. Do you need
to cut out that overhead? Maybe yes, maybe no: it depends on your performance
requirements.

You should also take a look at the sister Apache::Registry modules (e.g., Apache::
RegistryBB) that don’t perform all these steps, so you can still stick to using scripts to
generate the content. The greatest added value of scripts is that you don’t have to
modify the configuration file to add the handler configuration and restart the server
for each newly written content handler.

Another alternative is the Apache::Dispatch module (covered in Appendix B), which
allows you to add new handlers and run them without modifying the configuration.

Now let’s run some benchmarks and compare.

We want to see the overhead that Apache::Registry adds compared to a custom han-
dler and whether it becomes insignificant when used for heavy and time-consuming
code. In order to do this we will run two benchmark sets: the first, the light set, will
use an almost empty script that sends only a basic header and one word of content;
the second will be the heavy set, which adds some time-consuming operation to the
script and handler code.

For the light set we will use the registry.pl script running under Apache::Registry (see
Example 13-1).

And we will use the equivalent content-generation handler, shown in Example 13-2.

Example 13-1. benchmarks/registry.pl

use strict;
print "Content-type: text/plain\n\n";
print "Hello";

,ch13.24285  Page 454  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Apache::Registry PerlHandler Versus Custom PerlHandler | 455

We will add these settings to httpd.conf:

PerlModule Benchmark::Handler
<Location /benchmark_handler>
    SetHandler perl-script
    PerlHandler Benchmark::Handler
</Location>

The first directive preloads and compiles the Benchmark::Handler module. The
remaining lines tell Apache to execute the subroutine Benchmark::Handler::handler
when a request with the relative URI /benchmark_handler is made.

We will use the usual configuration for Apache::Registry scripts, where all the URIs
starting with /perl are mapped to the files residing under the /home/httpd/perl directory:

Alias /perl /home/httpd/perl
<Location /perl>
    SetHandler perl-script
    PerlHandler +Apache::Registry
    Options ExecCGI
    PerlSendHeader On
</Location>

We will use Apache::RegistryLoader to preload and compile the script at server
startup as well, so the benchmark is fair and only processing time is measured. To
accomplish the preloading we add the following code to the startup.pl file:

use Apache::RegistryLoader ( );
Apache::RegistryLoader->new->handler(
            "/perl/benchmarks/registry.pl",
 "/home/httpd/perl/benchmarks/registry.pl");

To create the heavy benchmark set, let’s leave the preceding code examples unmodi-
fied but add some CPU-intensive processing operation (e.g., an I/O operation or a
database query):

my $x = 100;
my $y = log ($x ** 100)  for (0..10000);

This code does lots of mathematical processing and is therefore very CPU-intensive.

Example 13-2. Benchmark/Handler.pm

package Benchmark::Handler;
use Apache::Constants qw(:common);

sub handler {
    $r = shift;
    $r->send_http_header('text/plain');
    $r->print("Hello");
    return OK;
}
1;

,ch13.24285  Page 455  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

456 | Chapter 13: TMTOWTDI: Convenience and Habit Versus Performance

Now we are ready to proceed with the benchmark. We will generate 5,000 requests
with a concurrency level of 15. Here are the results:

------------------------------
    name        | avtime   rps
------------------------------
light handler   |     15   911
light registry  |     21   680
------------------------------
heavy handler   |    183    81
heavy registry  |    191    77
------------------------------

First let’s compare the results from the light set. We can see that the average over-
head added by Apache::Registry (compared to the custom handler) is about:

21 - 15 = 6 milliseconds

per request.

The difference in speed is about 40% (15 ms versus 21 ms). Note that this doesn’t
mean that the difference in real-world applications would be so big. The results of
the heavy set confirm this.

In the heavy set the average processing time is almost the same for Apache::Registry
and the custom handler. You can clearly see that the difference between the two is
almost the same as in the light set’s results—it has grown from 6 ms to 8 ms (191 ms
– 183 ms). This means that the identical heavy code that has been added was run-
ning for about 168 ms (183 ms – 15 ms). However, this doesn’t mean that the added
code itself ran for 168 ms; it means that it took 168 ms for this code to be completed
in a multiprocess environment where each process gets a time slice to use the CPU.
The more processes that are running, the more time the process will have to wait to
get the next time slice when it can use the CPU.

We have answered the second question as well (whether the overhead of Apache::
Registry is significant when used for heavy code). You can see that when the code is
not just the hello script, the overhead added by Apache::Registry is almost insignifi-
cant. It’s not zero, though. Depending on your requirements, this 5–10 ms overhead
may be tolerable. If that’s the case, you may choose to use Apache::Registry.

An interesting observation is that when the server being tested runs on a very slow
machine the results are completely different:

------------------------------
    name        | avtime   rps
------------------------------
light handler   |     50   196
light registry  |    160    61
------------------------------
heavy handler   |    149    67
heavy registry  |    822    12
------------------------------

,ch13.24285  Page 456  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Apache::args Versus Apache::Request::param Versus CGI::param | 457

First of all, the 6-ms difference in average processing time we saw on the fast
machine when running the light set has now grown to 110 ms. This means that the
few extra operations that Apache::Registry performs turn out to be very expensive
on a slow machine.

Secondly, you can see that when the heavy set is used, the time difference is no
longer close to that found in the light set, as we saw on the fast machine. We
expected that the added code would take about the same time to execute in the han-
dler and the script. Instead, we see a difference of 673 ms (822 ms – 149 ms).

The explanation lies in the fact that the difference between the machines isn’t merely
in the CPU speed. It’s possible that there are many other things that are different—
for example, the size of the processor cache. If one machine has a processor cache
large enough to hold the whole handler and the other doesn’t, this can be very signif-
icant, given that in our heavy benchmark set, 99.9% of the CPU activity was dedi-
cated to running the calculation code.

This demonstrates that none of the results and conclusions made here should be
taken for granted. Most likely you will see similar behavior on your machine; how-
ever, only after you have run the benchmarks and analyzed the results can you be
sure of what is best for your situation. If you later happen to use a different machine,
make sure you run the tests again, as they may lead to a completely different deci-
sion (as we found when we tried the same benchmark on different machines).

Apache::args Versus Apache::Request::param
Versus CGI::param
Apache::args, Apache::Request::param, and CGI::param are the three most common
ways to process input arguments in mod_perl handlers and scripts. Let’s write three
Apache::Registry scripts that use Apache::args, Apache::Request::param, and CGI::
param to process a form’s input and print it out. Notice that Apache::args is consid-
ered identical to Apache::Request::param only when you have single-valued keys. In
the case of multi-valued keys (e.g., when using checkbox groups), you will have to
write some extra code. If you do a simple:

my %params = $r->args;

only the last value will be stored and the rest will collapse, because that’s what hap-
pens when you turn a list into a hash. Assuming that you have the following list:

(rules => 'Apache', rules => 'Perl', rules => 'mod_perl')

and assign it to a hash, the following happens:

$hash{rules} = 'Apache';
$hash{rules} = 'Perl';
$hash{rules} = 'mod_perl';

,ch13.24285  Page 457  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

458 | Chapter 13: TMTOWTDI: Convenience and Habit Versus Performance

So at the end only the following pair will get stored:

rules => 'mod_perl'

With CGI.pm or Apache::Request, you can solve this by extracting the whole list by its
key:

my @values = $q->param('rules');

In addition, Apache::Request and CGI.pm have many more functions that ease input
processing, such as handling file uploads. However, Apache::Request is theoretically
much faster, since its guts are implemented in C, glued to Perl using XS code.

Assuming that the only functionality you need is the parsing of key-value pairs, and
assuming that every key has a single value, we will compare the almost identical
scripts in Examples 13-3, 13-4, and 13-5 by trying to pass various query strings.

All three scripts and the modules they use are preloaded at server startup in startup.pl:

use Apache::RegistryLoader ( );
use CGI ( );
CGI->compile('param');
use Apache::Request ( );

Example 13-3. processing_with_apache_args.pl

use strict;
my $r = shift;
$r->send_http_header('text/plain');

my %args = $r->args;
print join "\n", map {"$_ => $args{$_}" } keys %args;

Example 13-4. processing_with_apache_request.pl

use strict;
use Apache::Request ( );
my $r = shift;
my $q = Apache::Request->new($r);
$r->send_http_header('text/plain');

my %args = map {$_ => $q->param($_) } $q->param;
print join "\n", map {"$_ => $args{$_}" } keys %args;

Example 13-5. processing_with_cgi_pm.pl

use strict;
use CGI;
my $r = shift;
my $q = new CGI;
$r->send_http_header('text/plain');

my %args = map {$_ => $q->param($_) } $q->param;
print join "\n", map {"$_ => $args{$_}" } keys %args;

,ch13.24285  Page 458  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Apache::args Versus Apache::Request::param Versus CGI::param | 459

# Preload registry scripts
Apache::RegistryLoader->new->handler(
                          "/perl/processing_with_cgi_pm.pl",
               "/home/httpd/perl/processing_with_cgi_pm.pl"
                  );
Apache::RegistryLoader->new->handler(
                          "/perl/processing_with_apache_request.pl",
               "/home/httpd/perl/processing_with_apache_request.pl"
                  );
Apache::RegistryLoader->new->handler(
                          "/perl/processing_with_apache_args.pl",
               "/home/httpd/perl/processing_with_apache_args.pl"
                  );
1;

We use four different query strings, generated by:

my @queries = (
    join("&", map {"$_=" . 'e' x 10}  ('a'..'b')),
    join("&", map {"$_=" . 'e' x 50}  ('a'..'b')),
    join("&", map {"$_=" . 'e' x 5 }  ('a'..'z')),
    join("&", map {"$_=" . 'e' x 10}  ('a'..'z')),
);

The first string is:

a=eeeeeeeeee&b=eeeeeeeeee

which is 25 characters in length and consists of two key/value pairs. The second
string is also made of two key/value pairs, but the values are 50 characters long (a
total of 105 characters). The third and fourth strings are each made from 26 key/
value pairs, with value lengths of 5 and 10 characters respectively and total lengths of
207 and 337 characters respectively. The query_len column in the report table is one
of these four total lengths.

We conduct the benchmark with a concurrency level of 50 and generate 5,000
requests for each test. The results are:

---------------------------------------------
name   val_len pairs query_len |  avtime  rps
---------------------------------------------
apreq     10      2       25   |    51    945
apreq     50      2      105   |    53    907
r_args    50      2      105   |    53    906
r_args    10      2       25   |    53    899
apreq      5     26      207   |    64    754
apreq     10     26      337   |    65    742
r_args     5     26      207   |    73    665
r_args    10     26      337   |    74    657
cgi_pm    50      2      105   |    85    573
cgi_pm    10      2       25   |    87    559
cgi_pm     5     26      207   |   188    263
cgi_pm    10     26      337   |   188    262
---------------------------------------------

,ch13.24285  Page 459  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

460 | Chapter 13: TMTOWTDI: Convenience and Habit Versus Performance

where apreq stands for Apache::Request::param( ), r_args stands for Apache::args( )
or $r->args( ), and cgi_pm stands for CGI::param( ).

You can see that Apache::Request::param and Apache::args have similar perfor-
mance with a few key/value pairs, but the former is faster with many key/value pairs.
CGI::param is significantly slower than the other two methods.

These results also suggest that the processing gets progressively slower as the num-
ber of key/value pairs grows, but longer lengths of the key/value pairs have less of a
slowdown impact. To verify that, let’s use the Apache::Request::param method and
first test several query strings made of five key/value pairs with value lengths grow-
ing from 10 characters to 60 in steps of 10:

my @strings = map {'e' x (10*$_)} 1..6;
my @ae = ('a'..'e');
my @queries = ( );
for my $string (@strings) {
    push @queries, join "&", map {"$_=$string"} @ae;
}

The results are:

-----------------------------------
val_len query_len    |  avtime  rps
-----------------------------------
  10       77        |    55    877
  20      197        |    55    867
  30      257        |    56    859
  40      137        |    56    858
  50      317        |    56    857
  60      377        |    58    828
-----------------------------------

Indeed, the length of the value influences the speed very little, as we can see that the
average processing time almost doesn’t change as the length of the value grows.

Now let’s use a fixed value length of 10 characters and test with a varying number of
key/value pairs, from 2 to 26 in steps of 5:

my @az = ('a'..'z');
my @queries = map { join("&", map {"$_=" . 'e' x 10 } @az[0..$_]) }
    (1, 5, 10, 15, 20, 25);

The results are:

-------------------------------
pairs  query_len |  avtime  rps
-------------------------------
  2       25     |    53    906
  6       77     |    55    869
 12      142     |    57    838
 16      207     |    61    785
 21      272     |    64    754
 26      337     |    66    726
-------------------------------

,ch13.24285  Page 460  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Buffered Printing and Better print( ) Techniques | 461

Now by looking at the average processing time column, we can see that the number
of key/value pairs makes a significant impact on processing speed.

Buffered Printing and Better print( )
Techniques
As you probably know, this statement:

local $|=1;

disables buffering of the currently select( )ed file handle (the default is STDOUT).
Under mod_perl, the STDOUT file handle is automatically tied to the output socket. If
STDOUT buffering is disabled, each print( ) call also calls ap_rflush( ) to flush
Apache’s output buffer.

When multiple print( ) calls are used (bad style in generating output), or if there are
just too many of them, you will experience a degradation in performance. The sever-
ity depends on the number of print( ) calls that are made.

Many old CGI scripts were written like this:

print "<body bgcolor=\"black\" text=\"white\">";
print "<h1>Hello</h1>";
print "<a href=\"foo.html\">foo</a>";
print "</body>";

This example has multiple print( ) calls, which will cause performance degradation
with $|=1. It also uses too many backslashes. This makes the code less readable, and
it is more difficult to format the HTML so that it is easily readable as the script’s out-
put. The code below solves the problems:

print qq{
  <body bgcolor="black" text="white">
    <h1>Hello</h1>
    <a href="foo.html">foo</a>
  </body>
};

You can easily see the difference. Be careful, though, when printing an <html> tag.
The correct way is:

print qq{<html>
  <head></head>
};

You can also try the following:

print qq{
  <html>
  <head></head>
};

,ch13.24285  Page 461  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

462 | Chapter 13: TMTOWTDI: Convenience and Habit Versus Performance

but note that some older browsers expect the first characters after the headers and
empty line to be <html> with no spaces before the opening left angle bracket. If there
are any other characters, they might not accept the output as HTML might and print
it as plain text. Even if this approach works with your browser, it might not work
with others.

Another approach is to use the here document style:

print <<EOT;
<html>
<head></head>
EOT

Performance-wise, the qq{ } and here document styles compile down to exactly the
same code, so there should not be any real difference between them.

Remember that the closing tag of the here document style (EOT in our example) must
be aligned to the left side of the line, with no spaces or other characters before it and
nothing but a newline after it.

Yet another technique is to pass the arguments to print( ) as a list:

print "<body bgcolor=\"black\" text=\"white\">",
      "<h1>Hello</h1>",
      "<a href=\"foo.html\">foo</a>",
      "</body>";

This technique makes fewer print( ) calls but still suffers from so-called backslashitis
(quotation marks used in HTML need to be prefixed with a backslash). Single quotes
can be used instead:

'<a href="foo.html">foo</a>'

but then how do we insert a variable? The string will need to be split again:

'<a href="',$foo,'.html">', $foo, '</a>'

This is ugly, but it’s a matter of taste. We tend to use the qq operator:

print qq{<a href="$foo.html">$foo</a>
         Some text
         <img src="bar.png" alt="bar" width="1" height="1">
        };

What if you want to make fewer print( ) calls, but you don’t have the output ready all
at once? One approach is to buffer the output in the array and then print it all at once:

my @buffer = ( );
push @buffer, "<body bgcolor=\"black\" text=\"white\">";
push @buffer, "<h1>Hello</h1>";
push @buffer, "<a href=\"foo.html\">foo</a>";
push @buffer, "</body>";
print @buffer;

,ch13.24285  Page 462  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Buffered Printing and Better print( ) Techniques | 463

An even better technique is to pass print( ) a reference to the string. The print( )
used under Apache overloads the default CORE::print( ) and knows that it should
automatically dereference any reference passed to it. Therefore, it’s more efficient to
pass strings by reference, as it avoids the overhead of copying.

my $buffer = "<body bgcolor=\"black\" text=\"white\">";
$buffer .= "<h1>Hello</h1>";
$buffer .= "<a href=\"foo.html\">foo</a>";
$buffer .= "</body>";
print \$buffer;

If you print references in this way, your code will not be backward compatible with
mod_cgi, which uses the CORE::print( ) function.

Now to the benchmarks. Let’s compare the printing techniques we have just dis-
cussed. The benchmark that we are going to use is shown in Example 13-6.

Example 13-6. benchmarks/print.pl

use Benchmark;
use Symbol;

my $fh = gensym;
open $fh, ">/dev/null" or die;

my @text = (
    "<!DOCTYPE HTML PUBLIC \"-//IETF//DTD HTML//EN\">\n",
    "<HTML>\n",
    "  <HEAD>\n",
    "    <TITLE>\n",
    "      Test page\n",
    "    </TITLE>\n",
    "  </HEAD>\n",
    "  <BODY BGCOLOR=\"black\" TEXT=\"white\">\n",
    "    <H1>\n",
    "      Test page \n",
    "    </H1>\n",
    "    <A HREF=\"foo.html\">foo</A>\n",
    "text line that emulates some real output\n" x 100,
    "    <HR>\n",
    "  </BODY>\n",
    "</HTML>\n",
);

my $text = join "", @text;

sub multi {
    my @copy = @text;
    my_print($_) for @copy;
}

sub single {
    my $copy = $text;

,ch13.24285  Page 463  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

464 | Chapter 13: TMTOWTDI: Convenience and Habit Versus Performance

    my_print($copy);
}

sub array {
    my @copy = @text;
    my_print(@copy);
}

sub ref_arr {
    my @refs = \(@text);
    my_print(@refs);
}

sub concat {
    my $buffer;
    $buffer .= $_ for @text;
    my_print($buffer);
}

sub my_join {
    my $buffer = join '', @text;
    my_print($buffer);
}

sub my_print {
    for (@_) {
        print $fh ref($_) ? $$_ : $_;
    }
}

timethese(100_000, {
    join    => \&my_join,
    array   => \&array,
    ref_arr => \&ref_arr,
    multi   => \&multi,
    single  => \&single,
    concat  => \&concat,
});

timethese(100_000, {
    'array  /b' => sub {my $ofh=select($fh);$|=0;select($ofh); array( )  },
    'array  /u' => sub {my $ofh=select($fh);$|=1;select($ofh); array( )  },
    'ref_arr/b' => sub {my $ofh=select($fh);$|=0;select($ofh); ref_arr( )},
    'ref_arr/u' => sub {my $ofh=select($fh);$|=1;select($ofh); ref_arr( )},
    'multi  /b' => sub {my $ofh=select($fh);$|=0;select($ofh); multi( )  },
    'multi  /u' => sub {my $ofh=select($fh);$|=1;select($ofh); multi( )  },
    'single /b' => sub {my $ofh=select($fh);$|=0;select($ofh); single( ) },
    'single /u' => sub {my $ofh=select($fh);$|=1;select($ofh); single( ) },
    'concat /b' => sub {my $ofh=select($fh);$|=0;select($ofh); concat( ) },
    'concat /u' => sub {my $ofh=select($fh);$|=1;select($ofh); concat( ) },
    'join   /b' => sub {my $ofh=select($fh);$|=0;select($ofh); my_join( )},

Example 13-6. benchmarks/print.pl (continued)

,ch13.24285  Page 464  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Buffered Printing and Better print( ) Techniques | 465

Under Perl 5.6.0 on Linux, the first set of results, sorted by CPU clocks, is:

Benchmark: timing 100000 iterations of array, concat, multi, ref_array...
   single:  6 wallclock secs ( 5.42 usr + 0.16 sys =  5.58 CPU)
     join:  8 wallclock secs ( 8.63 usr + 0.14 sys =  8.77 CPU)
   concat: 12 wallclock secs (10.57 usr + 0.31 sys = 10.88 CPU)
  ref_arr: 14 wallclock secs (11.92 usr + 0.13 sys = 12.05 CPU)
    array: 15 wallclock secs (12.95 usr + 0.26 sys = 13.21 CPU)
    multi: 38 wallclock secs (34.94 usr + 0.25 sys = 35.19 CPU)

single string print is obviously the fastest; join, concatination of string, array of refer-
ences to string, and array of strings are very close to each other (the results may vary
according to the length of the strings); and print call per string is the slowest.

Now let’s look at the same benchmark, where the printing was either buffered or not:

Benchmark: timing 100000 iterations of ...
single /b: 10 wallclock secs ( 8.34 usr + 0.23 sys =  8.57 CPU)
single /u: 10 wallclock secs ( 8.57 usr + 0.25 sys =  8.82 CPU)
join   /b: 13 wallclock secs (11.49 usr + 0.27 sys = 11.76 CPU)
join   /u: 12 wallclock secs (11.80 usr + 0.18 sys = 11.98 CPU)
concat /b: 14 wallclock secs (13.73 usr + 0.17 sys = 13.90 CPU)
concat /u: 16 wallclock secs (13.98 usr + 0.15 sys = 14.13 CPU)
ref_arr/b: 15 wallclock secs (14.95 usr + 0.20 sys = 15.15 CPU)
array  /b: 16 wallclock secs (16.06 usr + 0.23 sys = 16.29 CPU)
ref_arr/u: 18 wallclock secs (16.85 usr + 0.98 sys = 17.83 CPU)
array  /u: 19 wallclock secs (17.65 usr + 1.06 sys = 18.71 CPU)
multi  /b: 41 wallclock secs (37.89 usr + 0.28 sys = 38.17 CPU)
multi  /u: 48 wallclock secs (43.24 usr + 1.67 sys = 44.91 CPU)

First, we see the same picture among different printing techniques. Second, we can
see that the buffered print is always faster, but only in the case where print() is
called for each short string does it have a significant speed impact.

Now let’s go back to the $|=1 topic. You might still decide to disable buffering, for
two reasons:

• You use relatively few print( ) calls. You achieve this by arranging for print( )
statements to print multiline text, not one line per print( ) statement.

• You want your users to see output immediately. If you are about to produce the
results of a database query that might take some time to complete, you might
want users to get some feedback while they are waiting. Ask yourself whether
you prefer getting the output a bit slower but steadily from the moment you
press the Submit button, or having to watch the “falling stars” for a while and
then getting the whole output at once, even if it’s a few milliseconds faster—
assuming the browser didn’t time out during the wait.

    'join   /u' => sub {my $ofh=select($fh);$|=1;select($ofh); my_join( )},
});

Example 13-6. benchmarks/print.pl (continued)

,ch13.24285  Page 465  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

466 | Chapter 13: TMTOWTDI: Convenience and Habit Versus Performance

An even better solution is to keep buffering enabled and call $r->rflush( ) to flush
the buffers when needed. This way you can place the first part of the page you are
sending in the buffer and flush it a moment before you perform a lengthy operation
such as a database query. This kills two birds with the same stone: you show some of
the data to the user immediately so she will see that something is actually happen-
ing, and you don’t suffer from the performance hit caused by disabling buffering.
Here is an example of such code:

use CGI ( );
my $r = shift;
my $q = new CGI;
print $q->header('text/html');
print $q->start_html;
print $q->p("Searching...Please wait");
$r->rflush;

# imitate a lengthy operation
for (1..5) {
    sleep 1;
}

print $q->p("Done!");

The script prints the beginning of the HTML document along with a nice request to
wait by flushing the output buffer just before it starts the lengthy operation.

Now let’s run the web benchmark and compare the performance of buffered versus
unbuffered printing in the multi-printing code used in the last benchmark. We are
going to use two identical handlers, the first handler having its STDOUT stream (tied to
socket) unbuffered. The code appears in Example 13-7.

Example 13-7. Book/UnBuffered.pm

package Book::UnBuffered;
use Apache::Constants qw(:common);
local $|=1; # Switch off buffering.
sub handler {
    my $r = shift;
    $r->send_http_header('text/html');
    print "<!DOCTYPE HTML PUBLIC \"-//IETF//DTD HTML//EN\">\n";
    print "<html>\n";
    print "  <head>\n";
    print "    <title>\n";
    print "      Test page\n";
    print "    </title>\n";
    print "  </head>\n";
    print "  <body bgcolor=\"black\" text=\"white\">\n";
    print "    <h1> \n";
    print "      Test page \n";
    print "    </h1>\n";
    print "    <a href=\"foo.html\">foo</a>\n" for 1..100;
    print "    <hr>\n";

,ch13.24285  Page 466  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Interpolation, Concatenation, or List | 467

The following httpd.conf configuration is used:

#################################
### Buffered output
#################################
<Location /buffering>
    SetHandler perl-script
    PerlHandler +Book::Buffered
</Location>

#################################
### UnBuffered output
#################################
<Location /unbuffering>
    SetHandler perl-script
    PerlHandler +Book::UnBuffered
</Location>

Now we run the benchmark, using ApacheBench, with concurrency set to 50, for a
total of 5,000 requests. Here are the results:

name        |   avtime completed failed  RPS
---------------------------------------------
unbuffering |     56      5000      0    855
buffering   |     55      5000      0    865

As you can see, there is not much difference when the overhead of other processing
is added. The difference was more significant when we benchmarked only the Perl
code. In real web requests, a few percent difference will be felt only if you unbuffer
the output and print thousands of strings one at a time.

Interpolation, Concatenation, or List
Let’s revisit the various approaches of munging with strings, and compare the speed
of using lists of strings versus interpolation. We will add a string concatenation angle
as well.

When the strings are small, it almost doesn’t matter whether interpolation or a list is
used (see Example 13-8).

    print "  </body>\n";
    print "</html>\n";
    return OK;
}
1;

Example 13-8. benchmarks/join.pl

use Benchmark;
use Symbol;
my $fh = gensym;

Example 13-7. Book/UnBuffered.pm (continued)

,ch13.24285  Page 467  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

468 | Chapter 13: TMTOWTDI: Convenience and Habit Versus Performance

Here’s the benchmarking result:

 Benchmark: timing 1000000 iterations of conc, interp, list...
    conc:  3 wallclock secs ( 3.38 usr +  0.00 sys =  3.38 CPU)
  interp:  3 wallclock secs ( 3.45 usr + -0.01 sys =  3.44 CPU)
    list:  2 wallclock secs ( 2.58 usr +  0.00 sys =  2.58 CPU)

The results of the concatenation technique are very similar to those of interpolation.
The list technique is a little bit faster than interpolation. However, when the strings
are large, lists are significantly faster. We saw this in the previous section, and
Example 13-9 presents another benchmark to increase our confidence in our conclu-
sion. This time we use 1,000-character strings.

open $fh, ">/dev/null" or die;

my($one, $two, $three, $four) = ('a'..'d');

timethese(1_000_000, {
     interp => sub {
         print $fh "$one$two$three$four";
     },
     list => sub {
         print $fh $one, $two, $three, $four;
     },
     conc => sub {
         print $fh $one . $two . $three . $four;
     },
});

Example 13-9. benchmarks/join_long.pl

use Benchmark;
use Symbol;
my $fh = gensym;
open $fh, ">/dev/null" or die;

my($one, $two, $three, $four) = map { $_ x 1000 } ('a'..'d');

timethese(500_000, {
     interp => sub {
         print $fh "$one$two$three$four";
     },
     list => sub {
         print $fh $one, $two, $three, $four;
     },
     conc => sub {
         print $fh $one . $two . $three . $four;
     },
});

Example 13-8. benchmarks/join.pl (continued)

,ch13.24285  Page 468  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Interpolation, Concatenation, or List | 469

Here’s the benchmarking result:

Benchmark: timing 500000 iterations of interp, list...
   conc:  5 wallclock secs ( 4.47 usr +  0.27 sys =  4.74 CPU)
 interp:  4 wallclock secs ( 4.25 usr +  0.26 sys =  4.51 CPU)
   list:  4 wallclock secs ( 2.87 usr +  0.16 sys =  3.03 CPU)

In this case using a list is about 30% faster than interpolation. Concatenation is a lit-
tle bit slower than interpolation.

Let’s look at this code:

$title = 'My Web Page';
print "<h1>$title</h1>";         # Interpolation (slow)
print '<h1>' . $title . '</h1>'; # Concatenation (slow)
print '<h1>',  $title,  '</h1>'; # List (fast for long strings)

When you use "<h1>$title</h1>", Perl does interpolation (since "" is an operator in
Perl)—it parses the contents of the string and replaces any variables or expressions it
finds with their respective values. This uses more memory and is slower than using a
list. Of course, if there are no variables to interpolate it makes no difference whether
you use "string" or 'string'.

Concatenation is also potentially slow, since Perl might create a temporary string,
which it then prints.

Lists are fast because Perl can simply deal with each element in turn. This is true if
you don’t run join( ) on the list at the end to create a single string from the elements
of the list. This operation might be slower than directly appending to the string
whenever a new string springs into existence.

Please note that this optimization is a pure waste of time, except maybe in a few
extreme cases (if you have even 5,000 concatenations to serve a request, it won’t cost
you more than a few milliseconds to do it the wrong way). It’s a good idea to always
look at the big picture when running benchmarks.

Another aspect to look at is the size of the generated code. For example, lines 3, 4,
and 5 in Example 13-10 produce the same output.

Let’s look at how many bytes each line compiles into. We will use B::TerseSize for
this purpose:

panic% perl -MO=TerseSize size_interp.pl | grep line
size_interp.pl syntax OK

Example 13-10. size_interp.pl

$uri = '/test';
$filename = '/test.pl';
print "uri => ",  $uri,  " filename => ",  $filename,  "\n";
print "uri => " . $uri . " filename => " . $filename . "\n";
print "uri => $uri filename => $filename\n";
1; # needed for TerseSize to report the previous line's size

,ch13.24285  Page 469  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

470 | Chapter 13: TMTOWTDI: Convenience and Habit Versus Performance

[line 1 size: 238 bytes]
[line 2 size: 241 bytes]
[line 3 size: 508 bytes]
[line 4 size: 636 bytes]
[line 5 size: 689 bytes]

The code in line 3, which uses a list of arguments to print( ), uses significantly less
memory (508 bytes) than the code in line 4, which uses concatenation (636 bytes),
and the code in line 5, which uses interpolation (689 bytes).

If there are no variables to interpolate, it’s obvious that a list will use more memory
then a single string. Just to confirm that, take a look at Example 13-11.

Lines 2 and 3 get compiled to the same code, and its size is smaller than the code
produced by line 1, which uses a list.

Keeping a Small Memory Footprint
Since mod_perl processes tend to consume a lot of memory as the number of loaded
modules and scripts grows during the child’s lifetime, it’s important to know how to
keep memory usage down. Let’s see what should be kept in mind when writing code
that will be executed under mod_perl.

“Bloatware” Modules
Perl IO:: modules are very convenient, but let’s see what it costs to use them. The
following command (Perl 5.6.1 on Linux) reveals that when we use IO we also load
the IO::Handle, IO::Seekable, IO::File, IO::Pipe, IO::Socket, and IO::Dir modules.
The command also shows us how big they are in terms of code lines. wc(1) reports
how many lines of code are in each of the loaded files:

panic% wc -l `perl -MIO -e 'print join("\n", sort values %INC, "")'`
  124 /usr/lib/perl5/5.6.1/Carp.pm
  602 /usr/lib/perl5/5.6.1/Class/Struct.pm
  456 /usr/lib/perl5/5.6.1/Cwd.pm
  313 /usr/lib/perl5/5.6.1/Exporter.pm
  225 /usr/lib/perl5/5.6.1/Exporter/Heavy.pm

Example 13-11. size_nointerp.pl

print "uri => ",  "uri",  " filename => ",  "filename",  "\n";
print "uri => " . "uri" . " filename => " . "filename" . "\n";
print "uri => uri filename => filename\n";
1; # needed for TerseSize to report the previous line's size

panic% perl -MO=TerseSize size_nointerp.pl | grep line
size_nointerp.pl syntax OK
[line 1 size: 377 bytes]
[line 2 size: 165 bytes]
[line 3 size: 165 bytes]

,ch13.24285  Page 470  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Keeping a Small Memory Footprint | 471

   93 /usr/lib/perl5/5.6.1/File/Spec.pm
  458 /usr/lib/perl5/5.6.1/File/Spec/Unix.pm
  115 /usr/lib/perl5/5.6.1/File/stat.pm
  414 /usr/lib/perl5/5.6.1/IO/Socket/INET.pm
  143 /usr/lib/perl5/5.6.1/IO/Socket/UNIX.pm
   52 /usr/lib/perl5/5.6.1/SelectSaver.pm
  146 /usr/lib/perl5/5.6.1/Symbol.pm
  160 /usr/lib/perl5/5.6.1/Tie/Hash.pm
   92 /usr/lib/perl5/5.6.1/base.pm
 7525 /usr/lib/perl5/5.6.1/i386-linux/Config.pm
  276 /usr/lib/perl5/5.6.1/i386-linux/Errno.pm
  222 /usr/lib/perl5/5.6.1/i386-linux/Fcntl.pm
   47 /usr/lib/perl5/5.6.1/i386-linux/IO.pm
  239 /usr/lib/perl5/5.6.1/i386-linux/IO/Dir.pm
  169 /usr/lib/perl5/5.6.1/i386-linux/IO/File.pm
  612 /usr/lib/perl5/5.6.1/i386-linux/IO/Handle.pm
  252 /usr/lib/perl5/5.6.1/i386-linux/IO/Pipe.pm
  127 /usr/lib/perl5/5.6.1/i386-linux/IO/Seekable.pm
  428 /usr/lib/perl5/5.6.1/i386-linux/IO/Socket.pm
  453 /usr/lib/perl5/5.6.1/i386-linux/Socket.pm
  129 /usr/lib/perl5/5.6.1/i386-linux/XSLoader.pm
  117 /usr/lib/perl5/5.6.1/strict.pm
   83 /usr/lib/perl5/5.6.1/vars.pm
  419 /usr/lib/perl5/5.6.1/warnings.pm
   38 /usr/lib/perl5/5.6.1/warnings/register.pm
14529 total

About 14,500 lines of code! If you run a trace of this test code, you will see that it
also puts a big load on the machine to actually load these modules, although this is
mostly irrelevant if you preload the modules at server startup.

CGI.pm suffers from the same problem:

panic% wc -l `perl -MCGI -le 'print for values %INC'`
  313 /usr/lib/perl5/5.6.1/Exporter.pm
  124 /usr/lib/perl5/5.6.1/Carp.pm
  117 /usr/lib/perl5/5.6.1/strict.pm
   83 /usr/lib/perl5/5.6.1/vars.pm
   38 /usr/lib/perl5/5.6.1/warnings/register.pm
  419 /usr/lib/perl5/5.6.1/warnings.pm
  225 /usr/lib/perl5/5.6.1/Exporter/Heavy.pm
 1422 /usr/lib/perl5/5.6.1/overload.pm
  303 /usr/lib/perl5/5.6.1/CGI/Util.pm
 6695 /usr/lib/perl5/5.6.1/CGI.pm
  278 /usr/lib/perl5/5.6.1/constant.pm
10017 total

However, judging the bloat by the number of lines is misleading, since not all the
code is used in most cases. Also remember that documentation might account for a
significant chunk of the lines in every module.

Since we can preload the code at server startup, we are mostly interested in the exe-
cution overhead and memory footprint. So let’s look at the memory usage.

,ch13.24285  Page 471  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

472 | Chapter 13: TMTOWTDI: Convenience and Habit Versus Performance

Example 13-12 is the perlbloat.pl script, which shows how much memory is acquired
by Perl when you run some code. Now we can easily test the overhead of loading the
modules in question.

The script simply samples the total memory use, then evaluates the code passed to it,
samples the memory again, and prints the difference.

Now let’s try to load IO:

panic% ./perlbloat.pl 'use IO;'
use IO; added  1.3M

“Only” 1.3 MB of overhead. Now let’s load CGI.pm (v2.79) and compile its methods:

panic% ./perlbloat.pl 'use CGI; CGI->compile(":cgi")'
use CGI; CGI->compile(":cgi") added 784k

That’s almost 1 MB of extra memory per process.

Let’s compare CGI.pm with its younger sibling, whose internals are implemented in C:

%. /perlbloat.pl 'use Apache::Request'
use Apache::Request added   36k

Only 36 KB this time. A significant difference, isn’t it? We have compiled the :cgi
group of the CGI.pm methods, because CGI.pm is written in such a way that the actual
code compilation is deferred until some function is actually used. To make a fair
comparison with Apache::Request, we compiled only the methods present in both.

If we compile :all CGI.pm methods, the memory bloat is much bigger:

panic% ./perlbloat.pl 'use CGI; CGI->compile(":all")'
use CGI; CGI->compile(":all") added  1.9M

Example 13-12. perlbloat.pl

#!/usr/bin/perl -w

use GTop ( );

my $gtop = GTop->new;
my $before = $gtop->proc_mem($$)->size;

for (@ARGV) {
    if (eval "require $_") {
        eval { $_->import; };
    }
    else {
        eval $_;
        die $@ if $@;
    }
}

my $after = $gtop->proc_mem($$)->size;
print "@ARGV added " . GTop::size_string($after - $before) . "\n";

,ch13.24285  Page 472  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Keeping a Small Memory Footprint | 473

The following numbers show memory sizes in KB (virtual and resident) for Perl 5.6.0
on four different operating systems. Three calls are made: without any modules, with
only -MCGI, and with -MIO (never with both). The rows with -MCGI and -MIO are fol-
lowed by the difference relative to raw Perl.

  OpenBSD      FreeBSD       RedHat         Linux        Solaris
              vsz   rss     vsz   rss     vsz   rss    vsz    rss
  Raw Perl    736   772     832  1208    2412   980    2928  2272

  w/ CGI     1220  1464    1308  1828    2972  1768    3616  3232
  delta      +484  +692    +476  +620    +560  +788    +688  +960

  w/ IO      2292  2580    2456  3016    4080  2868    5384  4976
  delta     +1556 +1808   +1624 +1808   +1668 +1888   +2456 +2704

Which is more important: saving enough memory to allow the machine to serve a
few extra concurrent clients, or using off-the-shelf modules that are proven and well
understood? Debugging a reinvention of the wheel can cost a lot of development
time, especially if each member of your team reinvents in a different way. In general,
it is a lot cheaper to buy more memory or a bigger machine than it is to hire an extra
programmer. So while it may be wise to avoid using a bloated module if you need
only a few functions that you could easily code yourself, the place to look for real
efficiency savings is in how you write your code.

Importing Symbols
Imported symbols act just like global variables; they can add up memory quickly. In
addition to polluting the namespace, a process grows by the size of the space allo-
cated for all the symbols it imports. The more you import (e.g., qw(:standard) ver-
sus qw(:all) with CGI.pm), the more memory will be used.

Let’s say the overhead is of size Overhead. Now take the number of scripts in which
you deploy the function method interface—let’s call that Scripts. Finally, let’s say
that you have a number of processes equal to Processes.

You will need Overhead × Scripts × Processes of additional memory. Taking an insig-
nificant Overhead of 10 KB and, adding in 10 Scripts used across 30 Processes, we get
10 KB × 10 × 30 = 3 MB! The 10-KB overhead becomes a very significant one.

Let’s assume that we need to use strtol( ) from the POSIX package. Under Perl 5.6.1
we get:

panic% ./perlbloat.pl 'use POSIX ( ); POSIX::strtol(__PACKAGE__, 16)'
use POSIX ( ) added  176k

panic% ./perlbloat.pl 'use POSIX; strtol(__PACKAGE__, 16)'
use POSIX added  712k

,ch13.24285  Page 473  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

474 | Chapter 13: TMTOWTDI: Convenience and Habit Versus Performance

The first time we import no symbols, and the second time we import all the default
symbols from POSIX. The difference is 536 KB worth of aliases. Now let’s say 10 dif-
ferent Apache::Registry scripts 'use POSIX;' for strftime( ), and we have 30 mod_
perl processes:

536KB × 10 × 30 = 160MB

We have 160 MB of extra memory used. Of course, you may want to import only
needed symbols:

panic% ./perlbloat.pl 'use POSIX qw(strtol); strtol(__PACKAGE__, 16);'
use POSIX qw(strftime) added  344k

Still, using strftime( ) uses 168 KB more memory. Granted, POSIX is an extreme
case—usually the overhead is much smaller for a single script but becomes signifi-
cant if it occurs in many scripts executed by many processes.

Here is another example, now using the widely deployed CGI.pm module. Let’s com-
pare CGI.pm’s object-oriented and procedural interfaces. We’ll use two scripts that
generate the same output, the first (Example 13-13) using methods and the second
(Example 13-14) using functions. The second script imports a few functions that are
going to be used.

After executing each script in single server mode (-X), we can see the results with the
help of Apache::Status, as explained in Chapter 9.

Here are the results of the first script:

Totals: 1966 bytes | 27 OPs

handler 1514 bytes | 27 OPs
exit     116 bytes |  0 OPs

The results of the second script are:

Totals: 4710 bytes | 19 OPs

handler  1117 bytes | 19 OPs
basefont  120 bytes |  0 OPs
frameset  120 bytes |  0 OPs
caption   119 bytes |  0 OPs
applet    118 bytes |  0 OPs

Example 13-13. cgi_oo.pl

use CGI ( );
my $q = CGI->new;
print $q->header;
print $q->b("Hello");

Example 13-14. cgi_proc.pl

use CGI qw(header b);
print header( );
print b("Hello");

,ch13.24285  Page 474  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Object Methods Calls Versus Function Calls | 475

script    118 bytes |  0 OPs
ilayer    118 bytes |  0 OPs
header    118 bytes |  0 OPs
strike    118 bytes |  0 OPs
layer     117 bytes |  0 OPs
table     117 bytes |  0 OPs
frame     117 bytes |  0 OPs
style     117 bytes |  0 OPs
Param     117 bytes |  0 OPs
small     117 bytes |  0 OPs
embed     117 bytes |  0 OPs
font      116 bytes |  0 OPs
span      116 bytes |  0 OPs
exit      116 bytes |  0 OPs
big       115 bytes |  0 OPs
div       115 bytes |  0 OPs
sup       115 bytes |  0 OPs
Sub       115 bytes |  0 OPs
TR        114 bytes |  0 OPs
td        114 bytes |  0 OPs
Tr        114 bytes |  0 OPs
th        114 bytes |  0 OPs
b         113 bytes |  0 OPs

As you see, the object-oriented script uses about 2 KB of memory while the proce-
dural interface script uses about 5 KB.

Note that the above is correct if you didn’t precompile all of CGI.pm’s methods at
server startup. If you did, the procedural interface in the second test will take up to
18 KB, not 5 KB. That’s because the entire CGI.pm namespace is inherited, and it
already has all its methods compiled, so it doesn’t really matter whether you attempt
to import only the symbols that you need. So if you have:

use CGI  qw(-compile :all);

in the server startup script, having:

use CGI qw(header);

or:

use CGI qw(:all);

is essentially the same. All the symbols precompiled at startup will be imported, even
if you request only one symbol. It seems like a bug, but it’s just how CGI.pm works.

Object Methods Calls Versus Function Calls
Which form of subroutine call is more efficient: object methods or function calls?
Let’s look at the overhead.

,ch13.24285  Page 475  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

476 | Chapter 13: TMTOWTDI: Convenience and Habit Versus Performance

The Overhead with Light Subroutines
Let’s do some benchmarking. We will start by using empty methods, which will
allow us to measure the real difference in the overhead each kind of call introduces.
We will use the code in Example 13-15.

The two calls are equivalent, since both pass the class name as their first parameter;
function does this explicitly, while method does this transparently.

Here’s the benchmarking result:

Benchmark: timing 1000000 iterations of function, method...
function:  2 wallclock secs ( 1.36 usr +  0.05 sys =  1.41 CPU)
  method:  3 wallclock secs ( 2.57 usr + -0.03 sys =  2.54 CPU)

We see that the function call is almost twice as fast as the method call: 1.41 CPU
clocks compared to 2.54. Why is this? With a function call we give Perl the fully
qualified function name and set up its call stack ourselves by passing in the package
(class) name. With a method call Perl must work out the package (class) name for
itself, then search the inheritance tree to find the required method, then set up the
call stack. So in the case of a method call Perl must do a lot more work and is there-
fore slower.

Perl 5.6.0 and higher do better method caching than older Perl versions. Book::
LightSub->method( ) is a little bit faster (as it does better constant-folding magic), but
not Book::LightSub->$method( ). The improvement does not address the @ISA lookup
that still happens in either case.

The Overhead with Heavy Subroutines
The above results don’t mean that you shouldn’t use methods. Generally your func-
tions do something, and the more they do the less significant the overhead of the call
itself becomes. This is because the calling time is effectively fixed and usually creates
a very small overhead in comparison to the execution time of the method or func-
tion itself. This is demonstrated by the next benchmark (see Example 13-16).

Example 13-15. bench_call1.pl

package Book::LightSub;

use strict;
use Benchmark;

sub bar { };

timethese(1_000_000, {
    method   => sub { Book::LightSub->bar( )                 },
    function => sub { Book::LightSub::bar('Book::LightSub');},
});

,ch13.24285  Page 476  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Object Methods Calls Versus Function Calls | 477

We get a very close benchmark!

panic% ./bench_call2.pl
function:  5 wallclock secs ( 4.42 usr +  0.02 sys =  4.44 CPU)
  method:  5 wallclock secs ( 4.66 usr +  0.00 sys =  4.66 CPU)

Let’s make the subroutine bar even heavier, by making the for( ) loop five times
longer:

sub bar {
    my $class = shift;

    my ($x, $y) = (100, 100);
    $y = log ($x ** 10) for (0..100);
};

The result is:

function: 18 wallclock secs (17.87 usr +  0.10 sys = 17.97 CPU)
  method: 19 wallclock secs (18.22 usr +  0.01 sys = 18.23 CPU)

You can see that in the first and second benchmarks the difference between the func-
tion and method calls is almost the same: 0.22 and 0.26 CPU clocks, respectively.

In cases where functions do very little work, the overhead might become significant.
If your goal is speed you might consider using the function form, but if you write a
large and complicated application, it’s much better to use the method form, as it will
make your code easier to develop, maintain, and debug. Saving programmer time
over the life of a project may turn out to be the most significant cost factor.

Are All Methods Slower Than Functions?
Some modules’ APIs are misleading—for example, CGI.pm allows you to execute its
subroutines as functions or as methods. As you will see in a moment, its function

Example 13-16. bench_call2.pl

package Book::HeavySub;

use strict;
use Benchmark;

sub bar {
    my $class = shift;

    my ($x, $y) = (100, 100);
    $y = log ($x ** 10)  for (0..20);
};

timethese(100_000, {
    method   => sub { Book::HeavySub->bar( )                 },
    function => sub { Book::HeavySub::bar('Book::HeavySub');},
});

,ch13.24285  Page 477  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

478 | Chapter 13: TMTOWTDI: Convenience and Habit Versus Performance

form of the calls is slower than the method form because it does some voodoo
behind the scenes when the function form call is used:

use CGI;
my $q = new CGI;
$q->param('x', 5);
my $x = $q->param('x');

versus:

use CGI qw(:standard);
param('x', 5);
my $x = param('x');

Let’s benchmark some very light calls (see Example 13-17) and compare. We would
expect the methods to be slower than functions, based on the previous benchmarks.

The benchmark is written in such a way that all initializations are done at the begin-
ning, so that we get as accurate performance figures as possible:

panic% ./bench_call3.pl
function: 21 wallclock secs (19.88 usr +  0.30 sys = 20.18 CPU)
  method: 18 wallclock secs (16.72 usr +  0.24 sys = 16.96 CPU)

As you can see, methods are faster than functions, which seems to be wrong. The
explanation lies in the way CGI.pm is implemented. CGI.pm uses some fancy tricks to
make the same routine act both as a method and as a plain function. The overhead of
checking whether the arguments list looks like a method invocation or not will mask
the slight difference in time for the way the function was called.

If you are intrigued and want to investigate further by yourself, the subroutine you
should explore is called self_or_default. The first line of this function short-circuits
if you are using object methods, but the whole function is called if you are using the
function-call forms. Therefore, the function-call form should be slightly slower than
the object form for the CGI.pm module, which you shouldn’t be using anyway if you
have Apache::Request and a real templating system.

Example 13-17. bench_call3.pl

use Benchmark;

use CGI qw(:standard);
$CGI::NO_DEBUG = 1;
my $q = new CGI;
my $x;
timethese(2_000_000, {
    method   => sub {$q->param('x',5); $x = $q->param('x'); },
    function => sub {    param('x',5); $x =     param('x'); },
});

,ch13.24285  Page 478  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

time( ) System Call Versus $r->request_time | 479

Using the Perl stat( ) Call’s Cached Results
When you call stat( ) (or its variants -M, -e, etc.), the returned information is cached
internally. If you need to make an additional check on the same file, assuming that it
hasn’t been modified, use the _ magic file handle and save the overhead an unneces-
sary stat( ) call. For example, when testing for existence and read permissions, you
might use:

my $filename = "./test";
# three stat( ) calls
print "OK\n" if -e $filename and -r $filename;
my $mod_time = (-M $filename) * 24 * 60 * 60;
print "$filename was modified $mod_time seconds before startup\n";

or the more efficient:

my $filename = "./test";
# one stat( ) call
print "OK\n" if -e $filename and -r _;
my $mod_time = (-M _) * 24 * 60 * 60;
print "$filename was modified $mod_time seconds before startup\n";

Two stat( ) calls were saved!

If you need to stat( ) the mod_perl script that is being executed (or, in a handler, the
requested filename in $r->filename), you can save this stat( ) system call by passing
it $r->finfo as an argument. For example, to retrieve the user ID of the script’s
owner, use:

my $uid = (stat $r->finfo)[4];

During the default translation phase, Apache calls stat( ) on the script’s filename, so
later on we can reuse the cached stat( ) structure, assuming that it hasn’t changed
since the stat( ) call. Notice that in the example we do call stat( ), but this doesn’t
invoke the system call, since Perl resuses the cached data structure.

Furthermore, the call to $r->finfo stores its result in _ once again, so if we need
more information we can do:

print $r->filename, " is writable" if -e $r->finfo and -w _;

time( ) System Call Versus
$r->request_time
If you need to know the time at which the request started, you can either install
PerlPostReadRequestHandler, which adjusts the special Perl variable $^T to store that
time:

$^T = time( );

,ch13.24285  Page 479  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

480 | Chapter 13: TMTOWTDI: Convenience and Habit Versus Performance

and subsequently use that variable in the code, or you can use $r->request_time,
which stores the exact request’s start time and saves the extra system call to time( ).

Printing Unmodified Files
To send a complete file from disk, without applying any modifications first, instead of:

my $filename = "/tmp/foo";
my $fh = Apache::gensym( );  # generate a new filehandle
open $fh, $filename or return NOT_FOUND;
print <$fh>;
close $fh;

it’s better to write:

my $filename = "/tmp/foo";
my $fh = Apache::gensym( );  # generate a new filehandle
open $fh, $filename or return NOT_FOUND;
$r->send_fd($fh);
close $fh;

The former implementation uses more memory and it’s slower, because it creates a
temporary variable to read the data in and then print it out. The latter uses opti-
mized C code to read the file and send it to the client.

Caching and Pre-Caching
In some situations, you may have data that is expensive to generate but must be cre-
ated on the fly. If the data can be reused, it may be more efficient to cache it. This
will save the CPU cycles that regenerating the data would incur and will improve per-
formance (at the expense of using more memory to cache the results).

If the data set is final, it can be a good idea to generate this data set at server startup
and then share it with all the child processes, thus saving both memory and time.

We’ll create a calendar example similar to the ones many online services use to allow
their users to choose dates for online forms or to navigate to pages specific to a par-
ticular date. Since we are talking about dynamic pages, we cannot allow the calendar
to be static.

To make our explanations easier, let’s assume that we are trying to build a nice navi-
gation system for forums, but will implement only the temporal navigation. You can
extend our code to add the actual forums and interface elements to change presenta-
tion modes (index, thread, nested) and to change forums (perl, mod_perl, apache).

In Figure 13-1, you can see how the calendar looks if today is May 16, 2002 and the
user has just entered the site. You can see that only day numbers before this date are
linked to the data for those dates. The current month appears between the previous
month, April, and the next to come, June. June dates aren’t linked at all, since
they’re in the future.

,ch13.24285  Page 480  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Caching and Pre-Caching | 481

We click on April 16 and get a new calendar (see Figure 13-2), where April is shown
in the middle of the two adjacent months. Again, we can see that in May not all dates
are linked, since we are still in the middle of the month.

In both figures you can see a title (which can be pretty much anything) that can be
passed when some link in the calendar is clicked. When we go through the actual
script that presents the calendar we will show this in detail.

As you can see from the figures, you can move backward and forward in time by
clicking on the righthand or lefthand month. If you currently have a calendar show-
ing Mar-Apr-May, by clicking on some day in March, you will get a calendar of Feb-
Mar-Apr, and if you click on some day in May you will see Apr-May-Jun.

Most users will want to browse recent data from the forums—especially the current
month and probably the previous month. Some users will want to browse older
archives, but these users would be a minority.

Since the generation of the calendar is quite an expensive operation, it makes sense
to generate the current and previous months’ calendars at server startup and then

Figure 13-1. The calendar as seen on May 16, 2002

Figure 13-2. After clicking on the date April 16, 2002

,ch13.24285  Page 481  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

482 | Chapter 13: TMTOWTDI: Convenience and Habit Versus Performance

reuse them in all the child processes. We also want to cache any other items gener-
ated during the requests.

In order to appreciate the results of the benchmark presented at the end of this sec-
tion, which show the benefits of caching for this application, it’s important to under-
stand how the application works. Therefore, let’s explain the code first.

First we create a new package and load Date::Calc:

package Book::Calendar;
use Date::Calc ( );

Date::Calc, while a quite bloated module, is very useful for working with dates.

We have two caches, one for one-month text calendars (%TXT_CAL_CACHE, where we
will cache the output of Date::Calc::Calendar( )), and the other for caching the real
three-month HTML calendar components:

my %HTML_CAL_CACHE = ( );
my %TXT_CAL_CACHE = ( );

The following variable controls the last day the current month’s calendar was updated
in the cache. We will explain this variable (which serves as a flag) in a moment.

my $CURRENT_MONTH_LAST_CACHED_DAY = 0;

The debug constant allows us to add some debug statements and keep them in the
production code:

use constant DEBUG => 1;

All the code that is executed if DEBUG is true:

warn "foo" if DEBUG;

will be removed at compile time by Perl when DEBUG is made false (in production, for
example).

This code prebuilds each month’s calendar from three months back to one month for-
ward. If this module is loaded at server startup, pre-caching will happen automatically
and data will be shared between the children, so you save both memory and time. If
you think that you need more months cached, just adjust this pre-caching code.

my ($cyear,$cmonth) = Date::Calc::Today( );
for my $i (-3..1) {
    my($year, $month) =
        Date::Calc::Add_Delta_YMD($cyear, $cmonth, 1, 0, $i, 0);
    my $cal = '';
    get_html_calendar(\$cal, $year, $month);
}

The get_text_calendar function wraps a retrieval of plain-text calendars generated
by Date::Calc::Calendar( ), caches the generated months, and, if the month was
already cached, immediately returns it, thus saving time and CPU cycles.

,ch13.24285  Page 482  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Caching and Pre-Caching | 483

sub get_text_calendar{
    my($year, $month) = @_;
    unless ($TXT_CAL_CACHE{$year}{$month}) {
        $TXT_CAL_CACHE{$year}{$month} = Date::Calc::Calendar($year, $month);
        # remove extra new line at the end
        chomp $TXT_CAL_CACHE{$year}{$month};
    }
    return $TXT_CAL_CACHE{$year}{$month};
}

Now the main function starts.

sub get_html_calendar{
    my $r_calendar = shift;
    my $year   = shift || 1;
    my $month  = shift || 1;

get_html_calendar() is called with a reference to a final calendar and the year/month
of the middle month in the calendar. Remember that the whole widget includes three
months. So you call it like this, as we saw in the pre-caching code:

my $calendar = '';
get_html_calendar(\$calendar, $year, $month);

After get_html_calendar( ) is called, $calendar contains all the HTML needed.

Next we get the current year, month, and day, so we will know what days should be
linked. In our design, only past days and today are linked.

my($cur_year, $cur_month, $cur_day) = Date::Calc::Today( );

The following code decides whether the $must_update_current_month_cache flag
should be set or not. It’s used to solve a problem with calendars that include the cur-
rent month. We cannot simply cache the current month’s calendar, because on the
next day it will be incorrect, since the new day will not be linked. So what we are
going to do is cache this month’s day and remember this day in the $CURRENT_MONTH_
LAST_CACHED_DAY variable, explained later.

my $must_update_current_month_cache = 0;
for my $i (-1..1) {
    my($t_year, $t_month) =
        Date::Calc::Add_Delta_YMD($year, $month, 1, 0, $i, 0);
    $must_update_current_month_cache = 1
        if $t_year = = $cur_year and $t_month = = $cur_month
            and $CURRENT_MONTH_LAST_CACHED_DAY < $cur_day;
    last if $must_update_current_month_cache;
}

Now the decision logic is simple: we go through all three months in our calendar,
and if any of them is the current month, we check the date when the cache was last
updated for the current month (stored in the $CURRENT_MONTH_LAST_CACHED_DAY vari-
able). If this date is less than today’s date, we have to rebuild this cache entry.

unless (exists $HTML_CAL_CACHE{$year}{$month}
        and not $must_update_current_month_cache) {

,ch13.24285  Page 483  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

484 | Chapter 13: TMTOWTDI: Convenience and Habit Versus Performance

So we enter the main loop where the calendar is HTMLified and linked. We enter
this loop if:

1. There is no cached copy of the requested month.

2. There is a cached copy of the requested month, but it includes the current
month and the next date has arrived; we need to rebuild it again, since the new
day should be linked as well.

The following is the debug statement we mentioned earlier. This can help you check
that the cache works and that you actually reuse it. If the constant DEBUG is set to a
true value, the warning will be output every time this loop is entered.

warn "creating a new calendar for $year $month\n" if DEBUG;

When we load this module at server startup, the pre-caching code we described ear-
lier gets executed, and we will see the following warnings (if DEBUG is true):

creating a new calendar for 2000 9
creating a new calendar for 2000 10
creating a new calendar for 2000 11
creating a new calendar for 2000 12
creating a new calendar for 2001 1

        my @cal = ( );

Now we create three calendars, which will be stored in @cal:

for my $i (-1..1) {
    my $id = $i+1;

As you can see, we make a loop (-1,0,1) so we can go one month back from the
requested month and one month forward in a generic way.

Now we call Date::Calc::Add_Delta_YMD( ) to retrieve the previous, current, or next
month by providing the requested year and month, using the first date of the month.
Then we add zero years, $i months, and zero days. Since $i loops through the val-
ues (-1, 0, 1), we get the previous, current, and next months:

my ($t_year, $t_month) =
    Date::Calc::Add_Delta_YMD($year, $month, 1, 0, $i, 0);

Next, we get the text calendar for a single month. It will be cached internally by get_
text_calendar( ) if it wasn’t cached already:

$cal[$id] = get_text_calendar($t_year, $t_month);

The following code determines whether the requested month is the current month
(present), a month from the past, or the month in the future. That’s why the deci-
sion variable has three possible values: -1, 0, and 1 (past, present, and future, respec-
tively). We will need this flag when we decide whether a day should be linked or not.

my $yearmonth = sprintf("%0.4d%0.2d", $t_year, $t_month);
my $cur_yearmonth = sprintf("%0.4d%0.2d", $cur_year, $cur_month);

,ch13.24285  Page 484  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Caching and Pre-Caching | 485

# tri-state: ppf (past/present/future)
my $ppf = $yearmonth <=> $cur_yearmonth;
  # If    $yearmonth = = $cur_yearmonth, $ppf = 0;
  # elsif $yearmonth < $cur_yearmonth,  $ppf = -1;
  # elsif $yearmonth > $cur_yearmonth,  $ppf = 1;

This regex is used to substitute days in the textual calendar returned by Date::Calc::
Calendar( ) with links:

$cal[$id] =~ s{(\s\d|\b\d\d)\b}
              {link_days($1, $yearmonth, $ppf, $cur_day)}eg;

It means: “Find a space followed by a digit, or find two digits (in either case with no
adjoining digits), and replace what we’ve found with the result of the link_days( )
subroutine call.” The e option tells Perl to execute the substitution expression—i.e.,
to call link_days( )—and the g option tells Perl to perform the substitution for every
match found in the source string. Note that word boundaries are zero-width asser-
tions (they don’t match any text) and are needed to ensure that we don’t match the
year digits. You can see them in the first line of the calendar:

           May 2002
  Mon Tue Wed Thu Fri Sat Sun
            1   2   3   4   5
    6   7   8   9  10  11  12
   13  14  15  16  17  18  19
   20  21  22  23  24  25  26
   27  28  29  30  31

The link_days( ) subroutine will add HTML links only to dates that aren’t in the
future.

This line closes the for loop:

}

This code constructs an HTML table with three calendars and stores it in the cache.
We use <pre> ... </pre> blocks to preserve the textual layout of the calendar:

# cache the HTML calendar for future use
$HTML_CAL_CACHE{$year}{$month} =
qq{
 <table border="0" cellspacing="0"
  cellpadding="1" bgcolor="#000000">
   <tr>
     <td>
       <table border="0" cellspacing="0"
        cellpadding="10" bgcolor="#ccccff">
         <tr>
           <td valign="top"><pre>$cal[0]</pre></td>
           <td valign="top"><pre>$cal[1]</pre></td>
           <td valign="top"><pre>$cal[2]</pre></td>
         </tr>
       </table>
     </td>
   </tr>

,ch13.24285  Page 485  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

486 | Chapter 13: TMTOWTDI: Convenience and Habit Versus Performance

 </table>
};

If the $must_update_current_month_cache flag was turned on, the current month is re-
processed, since a new day just started. Therefore, we update the $CURRENT_MONTH_
LAST_CACHED_DAY with the current day, so that the next request in the same day will
use the cached data:

# update the last cached day in the current month if needed
$CURRENT_MONTH_LAST_CACHED_DAY = $cur_day
    if $must_update_current_month_cache;

This line signals that the conditional block where the calendar was created is over:

}

Regardless of whether the calendar is created afresh or was already cached, we pro-
vide the requested calendar component by assigning it to a variable in the caller
namespace, via the reference. The goal is for just this last statement to be executed
and for the cache to do the rest:

$$r_calendar = $HTML_CAL_CACHE{$year}{$month};

  } # end of sub calendar

Note that we copy the whole calendar component and don’t just assign the refer-
ence to the cached value. The reason for doing this lies in the fact that this calendar
component’s HTML text will be adjusted to the user’s environment and will render
the cached entry unusable for future requests. In a moment we will get to customize_
calendar( ), which adjusts the calendar for the user environment.

This is the function that was called in the second part of the regular expression:

sub link_days {
    my ($token, $yearmonth, $ppf, $cur_day) = @_;

It accepts the matched space digit or two digits. We kept the space character for days
1 to 9 so that the calendar is nicely aligned. The function is called as:

link_days($token, 200101, $ppf, $cur_day);

where the arguments are the token (e.g., ' 2' or '31' or possibly something else), the
year and the month concatenated together (to be used in a link), the past/present/
future month flag, and finally the current date’s day, which is relevant only if we are
working in the current month.

We immediately return unmodified non-days tokens and break the token into two
characters in one statement. Then we set the $fill variable to a single space charac-
ter if the token included days below 10, or set it to an empty string. $day actually
includes the date (1–31).

return $token unless my($c1, $c2) = $token =~ /^(\s|\d)(\d)$/;
my ($fill, $day) = ($c1 =~ /\d/) ? ('', $c1.$c2) : ($c1, $c2) ;

,ch13.24285  Page 486  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Caching and Pre-Caching | 487

The function is not supposed to link days in future months, or days in this month
that are in the future. For days in the future the function returns the token unmodi-
fied, which renders these days as plain text with no link.

# don't link days in the future
return $token if $ppf = = 1 or ($ppf = = 0 and $day > $cur_day);

Finally, those tokens that reach this point get linked. The link is constructed of the
[URL] placeholder, the date arguments, and the [PARAMS] placeholder. The placehold-
ers will be replaced with real data at runtime.

return qq{$fill<a href="[URL]?date=$yearmonth}.
       sprintf("%0.2d", $day).
       qq{&[PARAMS]" class="nolink">$day</a>};

The a tag’s nolink class attribute will be used by the client code to render the links
with no underlining, to make the calendar more visually appealing. The nolink class
must be defined in a Cascading Style Sheet (CSS). Be careful, though—this might not
be a very good usability technique, since many people are used to links that are blue
and underlined.

This line conludes the link_days( ) function:

} # end of sub link_days

The customize_calendar( ) subroutine takes a reference to a string of HTML (our cal-
endar component, for example) and replaces the placeholders with the data we pass
it. We do an efficient one-pass match and replace for both placeholders using the
hash lookup trick. If you want to add more placeholders later, all that’s needed is to
add a new placeholder name to the %map hash:

# replace the placeholders with live data
# customize_calendar(\$calendar,$url,$params);
#######################
sub customize_calendar {
    my $r_calendar = shift;
    my $url        = shift || '';
    my $params     = shift || '';
    my %map = (
        URL    => $url,
        PARAMS => $params,
    );
    $$r_calendar =~ s/\[(\w+)\]/$map{$1}/g;

} # end of sub calendar

The module ends with the usual true statement to make require( ) happy:

1;

The whole Book::Calendar package is presented in Example 13-18.

,ch13.24285  Page 487  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

488 | Chapter 13: TMTOWTDI: Convenience and Habit Versus Performance

Example 13-18. Book/Calendar.pm

package Book::Calendar;

use Date::Calc ( );

my %HTML_CAL_CACHE = ( );
my %TXT_CAL_CACHE = ( );
my $CURRENT_MONTH_LAST_CACHED_DAY = 0;

use constant DEBUG => 0;

# prebuild this month's, 3 months back and 1 month forward calendars
my($cyear, $cmonth) = Date::Calc::Today( );
for my $i (-3..1) {
    my($year, $month) = Date::Calc::Add_Delta_YMD($cyear, $cmonth, 1, 0, $i, 0);
    my $cal = '';
    get_html_calendar(\$cal, $year, $month); # disregard the returned calendar
}

# $cal = create_text_calendar($year, $month);
# the created calendar is cached
######################
sub get_text_calendar {
    my($year,$month) = @_;
    unless ($TXT_CAL_CACHE{$year}{$month}) {
        $TXT_CAL_CACHE{$year}{$month} = Date::Calc::Calendar($year, $month);
        # remove extra new line at the end
        chomp $TXT_CAL_CACHE{$year}{$month};
    }
    return $TXT_CAL_CACHE{$year}{$month};
}

# get_html_calendar(\$calendar,1999,7);
######################
sub get_html_calendar {
    my $r_calendar = shift;
    my $year   = shift || 1;
    my $month  = shift || 1;

    my($cur_year, $cur_month, $cur_day) = Date::Calc::Today( );

    # should requested calendar be updated if it exists already?
    my $must_update_current_month_cache = 0;
    for my $i (-1..1) {
        my ($t_year, $t_month) =
            Date::Calc::Add_Delta_YMD($year, $month, 1, 0, $i, 0);
        $must_update_current_month_cache = 1
            if $t_year = = $cur_year and $t_month = = $cur_month
                and $CURRENT_MONTH_LAST_CACHED_DAY < $cur_day;
        last if $must_update_current_month_cache;
    }

,ch13.24285  Page 488  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Caching and Pre-Caching | 489

    unless (exists $HTML_CAL_CACHE{$year}{$month}
            and not $must_update_current_month_cache) {

        warn "creating a new calendar for $year $month\n" if DEBUG;

        my @cal = ( );

        for my $i (-1..1) {
            my $id = $i+1;

            my ($t_year, $t_month) =
                Date::Calc::Add_Delta_YMD($year, $month, 1, 0, $i, 0);

            # link the calendar from passed month
            $cal[$id] = get_text_calendar($t_year, $t_month); # get a copy
            my $yearmonth = sprintf("%0.4d%0.2d", $t_year, $t_month);
            my $cur_yearmonth = sprintf("%0.4d%0.2d", $cur_year, $cur_month);

            # tri-state: ppf (past/present/future)
            my $ppf = $yearmonth <=> $cur_yearmonth;

            $cal[$id] =~ s{(\s\d|\b\d\d)\b}
                          {link_days($1, $yearmonth, $ppf, $cur_day)}eg;
        }

        # cache the HTML calendar for future use
        $HTML_CAL_CACHE{$year}{$month} =
        qq{
         <table border="0" cellspacing="0"
          cellpadding="1" bgcolor="#000000">
           <tr>
             <td>
               <table border="0" cellspacing="0"
                cellpadding="10" bgcolor="#ccccff">
                 <tr>
                   <td valign="top"><pre>$cal[0]</pre></td>
                   <td valign="top"><pre>$cal[1]</pre></td>
                   <td valign="top"><pre>$cal[2]</pre></td>
                 </tr>
               </table>
             </td>
           </tr>
         </table>
        };

        $CURRENT_MONTH_LAST_CACHED_DAY = $cur_day
            if $must_update_current_month_cache;

    }

    $$r_calendar = $HTML_CAL_CACHE{$year}{$month};

Example 13-18. Book/Calendar.pm (continued)

,ch13.24285  Page 489  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

490 | Chapter 13: TMTOWTDI: Convenience and Habit Versus Performance

Now let’s review the code that actually prints the page. The script starts by the usual
strict mode, and adds the two packages that we are going to use:

use strict;
use Date::Calc ( );
use Book::Calendar ( );

We extract the arguments via $r->args and store them in a hash:

my $r = shift;
my %args = $r->args;

} # end of sub calendar

#
# link_days($token,199901,1,10);
###########
sub link_days {
    my($token, $yearmonth, $ppf, $cur_day) = @_;
    # $cur_day relevant only if $ppf = = 0

    # skip non-days (non (\d or \d\d) )
    return $token unless my ($c1, $c2) = $token =~ /(\s|\d)(\d)/;

    my($fill, $day) = ($c1 =~ /\d/) ? ('', $c1.$c2) : ($c1, $c2) ;

    # don't link days in the future
    return $token if $ppf = = 1 or ($ppf = = 0 and $day > $cur_day);

    # link the date with placeholders to be replaced later
    return qq{$fill<a href="[URL]?date=$yearmonth}.
           sprintf("%0.2d",$day).
           qq{&[PARAMS]" class="nolink">$day</a>};

} # end of sub link_days

# replace the placeholders with live data
# customize_calendar(\$calendar,$url,$params);
#######################
sub customize_calendar {
    my $r_calendar = shift;
    my $url        = shift || '';
    my $params     = shift || '';
    my %map = (
        URL    => $url,
        PARAMS => $params,
    );
    $$r_calendar =~ s/\[(\w+)\]/$map{$1}/g;

} # end of sub calendar

1;

Example 13-18. Book/Calendar.pm (continued)

,ch13.24285  Page 490  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Caching and Pre-Caching | 491

Now we set the $year, $month, and $day variables by parsing the requested date
(which comes from the day clicked by the user in the calendar). If the date isn’t pro-
vided we use today as a starting point.

# extract the date or set it to be today
my ($year, $month, $day) =
    ($args{date} and $args{date} =~ /(\d{4})(\d\d)(\d\d)/)
    ? ($1, $2, $3)
    : Date::Calc::Today( );

Then we retrieve or use defaults for the other arguments that one might use in a
forum application:

my $do    = $args{do}    || 'forums';
my $forum = $args{forum} || 'mod_perl';
my $mode  = $args{mode}  || 'index';

Next we start to generate the HTTP response, by setting the Content-Type header to
text/html and sending all HTTP headers:

$r->send_http_header("text/html");

The beginning of the HTML page is generated. It includes the previously mentioned
CSS for the calendar link, whose class we have called nolink. Then we start the body
of the page and print the title of the page constructed from the arguments that we
received or their defaults, followed by the selected or current date:

my $date_str = Date::Calc::Date_to_Text($year, $month, $day);

my $title = "$date_str :: $do :: $forum :: $mode";
print qq{<html>
<head>
  <title>$title</title>
  <style type="text/css">
    <!--
    a.nolink { text-decoration: none; }
    -->
  </style>
</head>
<body bgcolor="white">
<h2 align="center">$title</h2>
};

Now we request the calendar component for $year and $month:

my $calendar = '';
Book::Calendar::get_html_calendar(\$calendar, $year, $month);

We adjust the links to the live data by replacing the placeholders, taking the script’s
URI from $r->uri, and setting the paramaters that will be a part of the link:

my $params = "do=forums&forum=mod_perl&mode=index";
Book::Calendar::customize_calendar(\$calendar, $r->uri, $params);

,ch13.24285  Page 491  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

492 | Chapter 13: TMTOWTDI: Convenience and Habit Versus Performance

At the end we print the calendar and finish the HTML:

print $calendar;
print qq{</body></html>};

The entire script is shown in Example 13-19.

Now let’s analyze the importance of the caching that we used in the Book::Calendar
module. We will use the simple benchmark in Example 13-20 to get the average
runtime under different conditions.

Example 13-19. calendar.pl

use strict;
use Date::Calc ( );
use Book::Calendar ( );

my $r = shift;
my %args = $r->args;

# extract the date or set it to be today
my($year, $month, $day) =
    ($args{date} and $args{date} =~ /(\d{4})(\d\d)(\d\d)/)
    ? ($1, $2, $3)
    : Date::Calc::Today( );

my $do    = $args{do}    || 'forums';
my $forum = $args{forum} || 'mod_perl';
my $mode  = $args{mode}  || 'index';

$r->send_http_header("text/html");

my $date_str = Date::Calc::Date_to_Text($year, $month, $day);

my $title = "$date_str :: $do :: $forum :: $mode";
print qq{<html>
<head>
  <title>$title</title>
  <style type="text/css">
    <!--
    a.nolink { text-decoration: none; }
    -->
  </style>
</head>
<body bgcolor="white">
<h2 align="center">$title</h2>
};

my $calendar = '';
Book::Calendar::get_html_calendar(\$calendar, $year, $month);

my $params = "do=forums&forum=mod_perl&mode=index";
Book::Calendar::customize_calendar(\$calendar, $r->uri, $params);
print $calendar;
print qq{</body></html>};

,ch13.24285  Page 492  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Caching and Pre-Caching | 493

We create two subroutines: calendar_cached( ) and calendar_non_cached( ). Note
that we aren’t going to remove the caching code from Book::Calendar; instead, in the
calendar_non_cached( ) function we will increment to the next month on each invo-
cation, thus not allowing the data to be cached. In calendar_cached( ) we will request
the same calendar all the time.

When the benchmark is executed on an unloaded machine, we get the following
results:

panic% perl calendar_bench.pl
 Benchmark: timing 10000 iterations of cached, non_cached...
    cached:  0 wallclock secs ( 0.48 usr +  0.01 sys =  0.49 CPU)
non_cached: 26 wallclock secs (24.93 usr +  0.56 sys = 25.49 CPU)

The non-cached version is about 52 times slower. On the other hand, when a pretty
heavy load is created, which is a common situation for web servers, we get these
results:

panic% perl calendar_bench.pl
 Benchmark: timing 10000 iterations of cached, non_cached...
    cached:  3 wallclock secs ( 0.52 usr +  0.00 sys =  0.52 CPU)
non_cached: 146 wallclock secs (28.09 usr +  0.46 sys = 28.55 CPU)

We can see that the results of running the same benchmark on machines with differ-
ent loads are very similar, because the module in question mostly needed CPU. It
took six times longer to complete the same benchmark, but CPU-wise the perfor-
mance is not very different from that of the unloaded machine. You should neverthe-
less draw your conclusions with care: if your code is not CPU-bound but I/O-bound,

Example 13-20. bench_cal.pl

use strict;
use Benchmark;
use Book::Calendar;

my ($year, $month) = Date::Calc::Today( );

sub calendar_cached {
    ($year, $month) = Date::Calc::Add_Delta_YMD($year, $month, 1, 0, 0, 0);
    my $calendar = '';
    Book::Calendar::get_html_calendar(\$calendar, $year, $month);
}
sub calendar_non_cached {
    ($year, $month) = Date::Calc::Add_Delta_YMD($year, $month, 1, 0, 1, 0);
    my $calendar = '';
    Book::Calendar::get_html_calendar(\$calendar, $year, $month);
}

timethese(10_000,
          {
           cached     => \&calendar_cached,
           non_cached => \&calendar_non_cached,
          });

,ch13.24285  Page 493  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

494 | Chapter 13: TMTOWTDI: Convenience and Habit Versus Performance

for example, the same benchmark on the unloaded and loaded machines will be very
different.

Caching with Memoize
If you have a subroutine with simpler logic, where a returned value is solely a func-
tion of an input, you can use the Memoize module, which does the caching automati-
cally for you. The gist of its usage is giving the name of the function to be memoize()d:

use Memoize;
memoize('slow_function');
slow_function(arguments);

Remember that in our case we had two caches: one for the text versions of the calen-
dars and the other for HTML components. The get_text_calendar( ) function is
responsible for populating the text calendar’s cache. It depends only on inputs, so we
could rewrite it as:

use Memoize;
memoize('get_text_calendar');
sub get_text_calendar {
    my($year,$month) = @_;
    warn "$year,$month\n" if DEBUG;
    my $cal = Date::Calc::Calendar($year, $month);
    chomp $cal;
    return $cal;
}

We have added another debug warning to check that the cache is actually working. If
you want to test it under mod_perl, set DEBUG to a true value, start the server in sin-
gle-process mode (-X), and issue requests to the calendar registry script we just dis-
cussed.

You can also control the size of the cache and do other automatic cache manipula-
tions with Memoize. See its manpage for more information.

The get_html_calendar( ) subroutine cannot be memoize()d because the returned
value depends on the relation between the requested date and the current date, in
addition to the normal input/output relation.

Comparing Runtime Performance
of Perl and C
Perl is commonly used for web scripting because it is quick and easy to write, and
very easy to change. Compiled languages usually take a lot more time and effort to
write and debug and can be time-consuming to change. But compiled code often
runs faster (sometimes a lot faster) than bytecode-interpreted languages such as Perl

,ch13.24285  Page 494  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Comparing Runtime Performance of Perl and C | 495

or Java. In most projects it is programmer time that is paramount, because program-
mers are expensive, but some projects demand performance above all other consider-
ations. How do we compare the performance of a Perl script to that of a C program?

We know we can use the Benchmark module to compare Perl code. There are equiva-
lent tools for C also, but how are we going to use two different tools and keep the
comparison fair? Since Perl is a glue language in addition to its own merits, we can
glue the C code into Perl and then use the Benchmark module to run the benchmark.

To simplify the task, we are going to demonstrate only the fact that C is more suit-
able than Perl for mathematical and memory-manipulation tasks. The purpose is to
show how to use the best of both worlds.

We will use a very simple task that we will implement in Perl and C: the factorial
function written both recursivly and iteratively. If you have ever taken a basic pro-
gramming course you will be familiar with this example.

In mathematical language, we define the factorial function as follows:

1! = 1
N! = N * (N-1)!

So if we start from 1 and go up, we get these numbers:

1! =                1
2! = (2)(1)       = 2
3! = (3)(2)(1)    = 6
4! = (4)(3)(2)(1) = 24
... and so on.

The factorial grows very fast—e.g., 10! = 3,628,800 and 12! = 4.790016e+08 (479
million)—so you can imagine that the calculation of the factorial of large numbers is
a memory-intensive operation.

Now since we have a recursive definition of the solution:

fact(1) = 1;
fact(N) = N * fact(N-1)

the easiest way to implement it is to write a recursive function. In Perl we just repro-
duce the definition:

sub factorial_recursive_perl {
    return 1 if $_[0] < 2;
    return $_[0] * factorial_recursive_perl($_[0] - 1);
}

Computer science teaches us that while recursive functions are often easy to write
they are usually slower to run than their iterative equivalents. The iterative imple-
mentation is as easy as the recursive one in our example, and it should run much
faster, since there is no function-call overhead. This is the iterative algorithm to cal-
culate fact(N):

result = 1
for (i = 2; i <= N; i++) {

,ch13.24285  Page 495  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

496 | Chapter 13: TMTOWTDI: Convenience and Habit Versus Performance

    result *= i;
}

By adjusting it to use idiomatic Perl, we get the following function:

sub factorial_iterative_perl {
    my $return = 1;
    $return *= $_ for 2..$_[0];
    return $return;
}

The implementations in C are again similar to the algorithm itself:

double factorial_recursive_c(int x) {
    if (x < 2)  return 1;
    return x * factorial_recursive_c(x - 1);
}

double factorial_iterative_c(int x) {
    int i;
    double result = 1;
    for (i = 2; i <= x; i++)
        result *= i;
    return result;
}

To jump ahead, when we run the final benchmark we get the following results:

Benchmark: timing 300000 iterations of iterative_c, iterative_perl,
           recursive_c, recursive_perl...
   iterative_c:  0 wallclock secs ( 0.47 usr +  0.00 sys =  0.47 CPU)
   recursive_c:  2 wallclock secs ( 1.15 usr +  0.00 sys =  1.15 CPU)
iterative_perl: 28 wallclock secs (26.34 usr +  0.00 sys = 26.34 CPU)
recursive_perl: 75 wallclock secs (74.64 usr +  0.11 sys = 74.75 CPU)

All functions under test were executing 100!, which is 9.33262154439441e+157
using scientific notation.

The iterative implementation is about two and a half times as fast in C and three
times as fast in Perl, where function calls are more expensive. Comparing C to Perl,
the iterative implementation in C is about 56 times faster than the same algorithm
implemented in Perl, and in the case of the recursive algorithm, C is 65 times faster.

There are at least three approaches to embedding other languages into Perl: XS, SWIG,
and Inline.pm. We will implement the C functions we’ve written using the XS and
Inline.pm techniques in the following sections. While SWIG is easier to use than XS
for simple tasks, it’s not as powerful as XS and it’s not bundled with Perl. If you work
on code that may later be distributed on CPAN, you’d better use XS or Inline.pm.

Building Perl Extensions with XS and h2xs
Perl comes with a nifty utility called h2xs that builds a skeleton for a new module.
It’s useful whether you are going to write a module with extensions in C/C++ or just
in plain Perl.

,ch13.24285  Page 496  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Comparing Runtime Performance of Perl and C | 497

When you run this utility it creates a new directory named after the module, and a
skeleton of the Makefile.PL, test.pl, Module.xs, Module.pm, Changes, and MANI-
FEST files. If you have a C header file, it tries to guess the XS code based on it and
write the correct XS file. Depending on how complicated your interface is, it may or
may not do the right thing, but it helps anyway since it creates a boilerplate (which
saves quite a lot of work).

First we prepare a C source file and its header file (see Examples 13-21 and 13-22).

It’s easy to get lost in directories when creating a new module; therefore, we will
show the exact directory we are in, using the prompt:

/home/stas/dev/fact>

Assuming that we work in this directory, we will save both files in this working direc-
tory. Let’s check:

/home/stas/dev/fact> find /home/stas/dev/fact -type f
/home/stas/dev/fact/factorial.c
/home/stas/dev/fact/factorial.h

Now we are ready to create the skeleton of the new module:

/home/stas/dev/fact> h2xs -n Book::Factorial -A -O -x \
  -F '-I ../..' factorial.h
Scanning typemaps...
Scanning /usr/lib/perl5/5.6.1/ExtUtils/typemap
Scanning factorial.h for functions...
Scanning factorial.h for typedefs...
Writing Book/Factorial/Factorial.pm
Writing Book/Factorial/Factorial.xs
Writing Book/Factorial/Makefile.PL
Writing Book/Factorial/README
Writing Book/Factorial/test.pl
Writing Book/Factorial/Changes
Writing Book/Factorial/MANIFEST

Example 13-21. factorial.h

double factorial_recursive_c(int x);
double factorial_iterative_c(int x);

Example 13-22. factorial.c

double factorial_recursive_c(int x) {
    if (x < 2)  return 1;
    return x * factorial_recursive_c(x - 1);
}

double factorial_iterative_c(int x) {
    int i;
    double result = 1;
    for (i = 2; i <= x; i++)
        result *= i;
    return result;
}

,ch13.24285  Page 497  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

498 | Chapter 13: TMTOWTDI: Convenience and Habit Versus Performance

We’ll explain the h2xs arguments we used:

• -n Book::Factorial specifies the name of the new module. It is also used to create
the base directory (in our case, Book/Factorial/).

• -A omits all autoload facilities.

• -O allows us to overwrite a directory with the new module if one already exists.

• -x automatically generates XSUBs based on function declarations in the header
file (factorial.h in our case).

• -F ‘-I../..’ specifies where the header file is to be found. When h2xs runs, it
changes into the newly created directory (Book/Factorial/ in our example), so in
order to see the header file, we have to tell h2xs to look two directories back.
(You may also need to add -F '-I.' during the make stage.)

• The header file (factorial.h in our case) comes last.

Our next step is to copy the C file and header into the newly created directory and cd
into it:

/home/stas/dev/fact> cp factorial.c factorial.h Book/Factorial/
/home/stas/dev/fact> cd Book/Factorial/

Since we have a really simple header file with only two function declarations, we just
need to adjust Makefile.PL to build the factorial.o object file and Factorial.o, the
actual extension library. We adjust Makefile.PL by adding the following line:

'OBJECT'            => 'Factorial.o factorial.o',

We fix the INC attribute to point to the current directory so the copied include file
will be found.

Now Makefile.PL looks like Example 13-23 (remember that h2xs does most of the
work for us).

Now we remove parts of the default module created by h2xs and add the Perl func-
tions to Factorial.pm, since our module mixes pure Perl and C functions. We also
write some simple documentation in POD format. After we add the Perl code and
documentation and do some patching, Factorial.pm looks like Example 13-24.

Example 13-23. Makefile.PL

use ExtUtils::MakeMaker;
# See lib/ExtUtils/MakeMaker.pm for details of how to influence
# the contents of the Makefile that is written.
WriteMakefile(
    'NAME'              => 'Book::Factorial',
    'VERSION_FROM'      => 'Factorial.pm', # finds $VERSION
    'PREREQ_PM'         => { }, # e.g., Module::Name => 1.1
    'LIBS'              => [''], # e.g., '-lm'
    'DEFINE'            => '', # e.g., '-DHAVE_SOMETHING'
    'INC'               => '-I .', # e.g., '-I/usr/include/other'
    'OBJECT'            => 'Factorial.o factorial.o',
);

,ch13.24285  Page 498  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Comparing Runtime Performance of Perl and C | 499

Example 13-24. Book/Factorial.pm

package Book::Factorial;

require 5.006;
use strict;

use vars  qw($VERSION);
$VERSION = '0.01';

use base qw(DynaLoader);

bootstrap Book::Factorial $VERSION;

sub factorial_recursive_perl {
    return 1 if $_[0] < 2;
    return $_[0] * factorial_recursive_perl($_[0] - 1);
}

sub factorial_iterative_perl {
    my $return = 1;
    $return *= $_ for 2..$_[0];
    return $return;
}

1;
__END__

=head1 NAME

Book::Factorial - Perl and C, Recursive and Iterative Factorial
Calculation Functions

=head1 SYNOPSIS

  use Book::Factorial;
  $input = 5;
  $result = Book::Factorial::factorial_iterative_c(   $input);
  $result = Book::Factorial::factorial_recursive_c(   $input);
  $result = Book::Factorial::factorial_iterative_perl($input);
  $result = Book::Factorial::factorial_recursive_perl($input);

=head1 DESCRIPTION

This module provides functions to calculate a factorial using
recursive and iterative algorithms, whose internal implementation are
coded in Perl and C.

=head2 EXPORTS

None.

=head1 AUTHORS

Eric Cholet <email address> and Stas Bekman <email address>

,ch13.24285  Page 499  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

500 | Chapter 13: TMTOWTDI: Convenience and Habit Versus Performance

If you’ve written pure Perl modules before, you’ll see that the only unusual part is the
code:

use base qw(DynaLoader);

bootstrap Book::Factorial $VERSION;

The base pragma specifies that the package Book::Factorial inherits from
DynaLoader. Alternatively, you can write this as:

require DynaLoader;
@Book::Factorial::ISA = qw(DynaLoader);

where @ISA is the array that’s used when inheritance relations are specified.

bootstrap is the place where the C extension Factorial.o is loaded, making the C
functions available as Perl subroutines.

It’s very important to document the module, especially when the package’s func-
tions don’t reside within the module itself. Doing so will let you and your users know
what functions are available, how they should be called, and what they return.

We have written very basic documentation. Usually it’s a good idea to document
each method.

In our example we decided not to export any functions to the callers; therefore, you
always need to prefix the functions with the package name if used outside of this
module:

use Book::Factorial;
$result = Book::Factorial::factorial_iterative_c(5);

We are almost done. Let’s build the Makefile:

/home/stas/dev/fact/Book/Factorial> perl Makefile.PL
Checking if your kit is complete...
Looks good
Writing Makefile for Book::Factorial

Next we run make to compile the extension and get the module ready for testing:

/home/stas/dev/fact/Factorial> make

In addition to building the extension, make also renders the POD documentation in
nroff format, which will be installed as a manpage when make install is run.

=head1 SEE ALSO

perl(1).

=cut

Example 13-24. Book/Factorial.pm (continued)

,ch13.24285  Page 500  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Comparing Runtime Performance of Perl and C | 501

It’s now time to test that the C extension was successfully linked and can be boot-
strapped. h2xs has already created test.pl, which does this basic testing:

/home/stas/dev/fact/Book/Factorial> make test
PERL_DL_NONLAZY=1 /usr/bin/perl -Iblib/arch -Iblib/lib
-I/usr/lib/perl5/5.6.1/i386-linux -I/usr/lib/perl5/5.6.1 test.pl
1..1
ok 1

As we can see, the testing phase has passed without any problems. Is that all? Not
really. We actually have to test that the functions are working as well, so we extend
the test suite with an exhaustive set of tests.

In product-validation terminology this is sometimes known as comparing the results
from the good and the bad machine, where the good machine is known to produce a
correct result. In our case the good machine is either our head or a simple calculator.
We know that:

4! = = 24

So we know that if the function works correctly, for a given input of 4, the output
should be 24. Of course, in some cases this test is not enough to tell a good function
from a broken one. The function might work correctly for some inputs but misbe-
have for others. You may need to come up with more elaborate tests.

The testing procedure is based on printing the number of tests to be run in the BEGIN
block and, for each test, printing either ok or not ok, followed by the number of the
current test. Example 13-25 is a modified test.pl that exercises the bootstrapping (as
provided by h2xs), plus two C functions and two Perl functions.

Example 13-25. test.pl

use Test;

BEGIN { plan tests => 5; }
use Book::Factorial;
ok 1; # module loaded OK

my $input = 4;
my $correct_result = 24; # the good machine: 4! = 24
my $result = 0;
my $s = 1;

# testing iterative C version
$result = Book::Factorial::factorial_iterative_c($input);
ok $result = = $correct_result;

# testing recursive C version
$result = Book::Factorial::factorial_recursive_c($input);
ok $result = = $correct_result;

,ch13.24285  Page 501  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

502 | Chapter 13: TMTOWTDI: Convenience and Habit Versus Performance

Note the magic BEGIN block, which ensures that the test reports failure if it failed to
load the module.

Now we run the test again using our new test.pl:

/home/stas/dev/fact/Book/Factorial> make test
PERL_DL_NONLAZY=1 /usr/bin/perl -Iblib/arch -Iblib/lib
-I/usr/lib/perl5/5.6.1/i386-linux -I/usr/lib/perl5/5.6.1 test.pl
1..5
ok 1
ok 2
ok 3
ok 4
ok 5

Fortunately all the tests have passed correctly. Now all we have to do is to install the
module in our filesystem and start using it. You have to be root to install the module
into the system-wide area:

/home/stas/dev/fact/Book/Factorial# su
/home/stas/dev/fact/Book/Factorial# make install
Installing /usr/lib/perl5/site_perl/5.6.1/i386-linux/auto/Book/Factorial/Factorial.so
Installing /usr/lib/perl5/site_perl/5.6.1/i386-linux/auto/Book/Factorial/Factorial.bs
Installing /usr/lib/perl5/site_perl/5.6.1/i386-linux/Book/Factorial.pm
Installing /usr/lib/perl5/man/man3/Book::Factorial.3

That’s it. Neither very complicated nor very simple. We mentioned the XS macro
language earlier but didn’t actually use it—this is because the code was simple, and
h2xs wrote the Factorial.xs file (shown in Example 13-26) for us based on the header
file we provided (factorial.h).

# testing iterative Perl version
$result = Book::Factorial::factorial_iterative_perl($input);
ok $result = = $correct_result;

# testing recursive Perl version
$result = Book::Factorial::factorial_recursive_perl($input);
ok $result = = $correct_result;

Example 13-26. Factorial.xs

#include "EXTERN.h"
#include "perl.h"
#include "XSUB.h"

#include <factorial.h>

MODULE = Book::Factorial        PACKAGE = Book::Factorial

double
factorial_iterative_c(x)
  int x

Example 13-25. test.pl (continued)

,ch13.24285  Page 502  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Comparing Runtime Performance of Perl and C | 503

This file actually implements the real gluing specification. During the make phase it
was macro-processed by the xsubpp subroutine into the C code version Factorial.c,
which was then compiled into the Factorial.o object file and finally converted into the
Factorial.so loadable object and installed in the architecture-dependent module library
tree (/usr/lib/perl5/site_perl/5.6.1/i386-linux/auto/Book/Factorial on our machine).

When a more complicated C interface is used, the glue code might be much more
involved and require knowledge of the XS language. XS is explained in the perlxs
manpage. The following manpages might be useful too:

perlembed   Perl ways to embed Perl in your C or C++ application
perlapio    Perl internal I/O abstraction interface
perldebguts Perl debugging guts and tips
perlxs      Perl XS application programming interface
perlxstut   Perl XS tutorial
perlguts    Perl internal functions for those doing extensions
perlcall    Perl calling conventions from C
perlapi     Perl API listing (autogenerated)
perlintern  Perl internal functions (autogenerated)

The POD documentation format is explained in the perlpod manpage.

You may also want to read Advanced Perl Programming, by Sriram Srinivasan
(O’Reilly), which covers XS and SWIG, and Extending and Embedding Perl, by Tim
Jenness and Simon Cozens (Manning Publications).

The Benchmark
We are now ready to write the benchmark code. Take a look at Example 13-27.

double
factorial_recursive_c(x)
  int x

Example 13-27. factorial_benchmark.pl

use strict;
use Benchmark;
use Book::Factorial ( );

my $top = 100;

timethese(300_000, {
  recursive_perl => sub {Book::Factorial::factorial_recursive_perl($top)},
  iterative_perl => sub {Book::Factorial::factorial_iterative_perl($top)},
  recursive_c    => sub {Book::Factorial::factorial_recursive_c($top)   },
  iterative_c    => sub {Book::Factorial::factorial_iterative_c($top)   },
});

Example 13-26. Factorial.xs (continued)

,ch13.24285  Page 503  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

504 | Chapter 13: TMTOWTDI: Convenience and Habit Versus Performance

As you can see, this looks just like normal Perl code. The Book::Factorial module is
loaded (assuming that you have installed it system-wide) and its functions are used
in the test.

We showed and analyzed the results at the beginning of our discussion, but we will
repeat the results here for the sake of completeness:

panic% ./factorial_benchmark.pl
Benchmark: timing 300000 iterations of iterative_c, iterative_perl,
           recursive_c, recursive_perl...
   iterative_c:  0 wallclock secs ( 0.47 usr +  0.00 sys =  0.47 CPU)
   recursive_c:  2 wallclock secs ( 1.15 usr +  0.00 sys =  1.15 CPU)
iterative_perl: 28 wallclock secs (26.34 usr +  0.00 sys = 26.34 CPU)
recursive_perl: 75 wallclock secs (74.64 usr +  0.11 sys = 74.75 CPU)

If you want to do the benchmarking after the module has been tested but before it’s
installed, you can use the blib pragma in the build directory:

panic% perl -Mblib factorial_benchmark.pl

Inline.pm
Using XS and SWIG may seem like a lot of time and work, especially for something
as simple as our factorial benchmark. Fortunately, there is a new module called
Inline.pm that makes using Perl with C almost as easy as writing Perl by itself.

Inline.pm allows you to put the source code of other programming languages directly
inside your Perl script or module. It currently supports C, C++, Python, Tcl, and
Java. The idea is that you can write functions, subroutines, or methods in these lan-
guages, and Inline.pm will automatically do whatever it takes to make them callable
by Perl. It will analyze your code, compile it if necessary, bind the appropriate rou-
tines, and load all the required components. This means that you can simply run
your code as if it were any other Perl program.

For example, the entire factorial benchmark program can be written as shown in
Example 13-28.

Example 13-28. factorial_benchmark_inline.pl

use strict;
use Benchmark;
use Inline 'C';

my $top = 150;

timethese(500000,
      {
       recursive_perl => sub {factorial_recursive_perl($top)},
       iterative_perl => sub {factorial_iterative_perl($top)},
       recursive_c    => sub {factorial_recursive_c(   $top)},
       iterative_c    => sub {factorial_iterative_c(   $top)},
      });

,ch13.24285  Page 504  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Comparing Runtime Performance of Perl and C | 505

That’s all there is to it. Just run this Perl program like any other, and it will work
exactly as you expect. The first time you run it, Inline.pm takes time to compile the
C code and build an executable object. On subsequent runs, Inline.pm will simply
load the precompiled version. If you ever modify the C code, Inline.pm will detect
that and recompile automatically for you.

The results of this benchmark should be similar to the benchmark of the XS version
of Book::Factorial, developed in the previous section.

Example 13-29 is an example of a simple mod_perl handler using Inline.pm with C.

sub factorial_recursive_perl {
    return 1 if $_[0] < 2;
    return $_[0] * factorial_recursive_perl($_[0] - 1);
}

sub factorial_iterative_perl {
    my $return = 1;
    $return *= $_ for 2..$_[0];
    return $return;
}

__END__

__C__

double factorial_recursive_c(int x) {
    if (x < 2)  return 1;
    return x * factorial_recursive_c(x - 1);
}

double factorial_iterative_c(int x) {
    int i;
    double result = 1;
    for (i = 2; i <= x; i++) result *= i;
    return result;
}

Example 13-29. Apache/Factorial.pm

package Apache::Factorial;
use strict;

use Apache::Constants qw(:common);

use Inline 'Untaint';
use Inline Config => DIRECTORY => '/tmp/Inline';
use Inline 'C';
Inline->init;

sub handler {
    my $r = shift;

Example 13-28. factorial_benchmark_inline.pl (continued)

,ch13.24285  Page 505  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

506 | Chapter 13: TMTOWTDI: Convenience and Habit Versus Performance

This handler will list out all of the factorial numbers between 1 and 10. The extra
Inline.pm commands are needed because of mod_perl’s unique environment require-
ments. It’s somewhat tricky to make Inline.pm work with mod_perl because of the
file permissions. The best approach is to force Inline.pm to compile the module
before starting the server. In our case, we can do:

panic% mkdir /tmp/Inline
panic% perl -I/home/httpd/perl -MApache::Factorial \
-e 'Apache::Factorial::handler'

Now all we need is for the /tmp/Inline directory to be readable by the server. That’s
where Inline.pm has built the loadable object and where it’s going to read from.

Inline.pm is an extremely versatile tool and can be used instead of XS in almost any
application. It also has features that go well beyond the capabilities of XS. Best of all,
you can get an Inline.pm program up and running in minutes.

The Inline.pm distribution comes with copious documentation, including a cook-
book of common C-based recipes that you can adapt to your taste. It is also actively
supported by the inline@perl.org mailing list.

Just like with XS, you can prepare a package with Makefile.PL and a test suite for a
distribution on CPAN. See the Inline.pm manpage for more details.

Perl Extensions Conclusion
We have presented two techniques to extend your Perl code with the power of other
languages (the C language in particular, but Inline.pm lets you embed other lan-
guages as well).

If you find that some sections of your code are better written in other languages that
may make them more efficient, it may be worth experimenting. Don’t blindly use

    $r->send_http_header('text/plain');
    printf "%3d! = %10d\n", $_, factorial($_) for 1..10;
    return OK;
}
1;

__DATA__

__C__

double factorial(int x) {
    int i;
    double result = 1;
    for (i = 2; i <= x; i++) result *= i;
    return result;
}

Example 13-29. Apache/Factorial.pm (continued)

,ch13.24285  Page 506  Thursday, November 18, 2004  12:42 PM



This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

References | 507

Perl to solve all your problems—some problems are better solved in other languages.
The more languages you know, the better.

Because Perl is so good at gluing other languages into itself, you don’t necessarily
have to choose between Perl and other languages to solve a problem. You can use
Perl and other languages together to get the best out of them all.

References
• XS macro language resources:

— perlguts, perlxs, and perlxstut manpages

— Dean Roehrich’s XS CookBookA and CookBookB: http://search.cpan.org/
search?dist=CookBookA and http://search.cpan.org/search?dist=CookBookB

— A series of articles at PerlMonth.com by Steven McDougall:

— http://world.std.com/~swmcd/steven/perl/pm/xs/intro/index.html

— http://world.std.com/~swmcd/steven/perl/pm/xs/concepts.html

— http://world.std.com/~swmcd/steven/perl/pm/xs/tools/index.html

— http://world.std.com/~swmcd/steven/perl/pm/xs/modules/modules.html

— http://world.std.com/~swmcd/steven/perl/pm/xs/nw/NW.html

— Chapters 18–20 in Advanced Perl Programming, by Sriram Srinivasan
(O’Reilly)

— Extending and Embedding Perl, by Tim Jenness and Simon Cozens (Man-
ning Publications Company)

— The perl-xs mailing list on http://perl.org/ (email perl-xs-subscribe@perl.org)

• SWIG: http://www.swig.org/

• Chapter 9 (“Tuning Apache and mod_perl”) in mod_perl Developer’s Cookbook,
by Geoffrey Young, Paul Lindner, and Randy Kobes (Sams Publishing).

• Mastering Regular Expressions: Powerful Techniques for Perl and Other Tools,
Second Edition, by Jeffrey E. F. Friedl (O’Reilly)

,ch13.24285  Page 507  Thursday, November 18, 2004  12:42 PM


