é ,ch12.24057 Page 403 Thursday, November 18, 2004 12:41 PM

*

CHAPTER 12
Server Setup Strategies

Since the first day mod_perl was available, users have adopted various techniques
that make the best of mod_perl by deploying it in combination with other modules
and tools. This chapter presents the theory behind these useful techniques, their pros
and cons, and of course detailed installation and configuration notes so you can eas-
ily reproduce the presented setups.

This chapter will explore various ways to use mod_perl, running it in parallel with
other web servers as well as coexisting with proxy servers.

mod_perl Deployment Overview

There are several different ways to build, configure, and deploy your mod_perl-
enabled server. Some of them are:

1. One big binary (for mod_perl) and one configuration file.

2. Two binaries (one big one for mod_perl and one small one for static objects,
such as images) and two configuration files.

3. One DSO-style Apache binary and two configuration files. The first configura-
tion file is used for the plain Apache server (equivalent to a static build of
Apache); the second configuration file is used for the heavy mod_perl server, by
loading the mod_perl DSO loadable object using the same binary.

4. Any of the above plus a reverse proxy server in httpd accelerator mode.

If you are new to mod_perl and just want to set up your development server quickly,
we recommend that you start with the first option and work on getting your feet wet
with Apache and mod_perl. Later, you can decide whether to move to the second
option, which allows better tuning at the expense of more complicated administra-
tion, to the third option (the more state-of-the-art DSO system), or to the fourth
option, which gives you even more power and flexibility. Here are some of the things
to consider.

403

4~ 4

*@%

é ,ch12.24057 Page 404 Thursday, November 18, 2004 12:41 PM

1.

The first option will kill your production site if you serve a lot of static data from
large (4—15 MB) web server processes. On the other hand, while testing you will
have no other server interaction to mask or add to your errors.

. The second option allows you to tune the two servers individually, for maxi-

mum performance. However, you need to choose whether to run the two serv-
ers on multiple ports, multiple IPs, etc., and you have the burden of
administering more than one server. You also have to deal with proxying or
complicated links to keep the two servers synchronized.

. With DSO, modules can be added and removed without recompiling the server,

and their code is even shared among multiple servers.

You can compile just once and yet have more than one binary, by using differ-
ent configuration files to load different sets of modules. The different Apache
servers loaded in this way can run simultaneously to give a setup such as that
described in the second option above.

The downside is that you are dealing with a solution that has weak documenta-
tion, is still subject to change, and, even worse, might cause some subtle bugs. It
is still somewhat platform-specific, and your mileage may vary.

Also, the DSO module (mod_so) adds size and complexity to your binaries.

. The fourth option (proxy in httpd accelerator mode), once correctly configured

and tuned, improves the performance of any of the above three options by cach-
ing and buffering page results. This should be used once you have mastered the
second or third option, and is generally the preferred way to deploy a mod_perl
server in a production environment.

If you are going to run two web servers, you have the following options:

Two machines

Serve the static content from one machine and the dynamic content from
another. You will have to adjust all the links in the generated HTML pages: you
cannot use relative references (e.g., /images/foo.gif) for static objects when the
page is generated by the dynamic-content machine, and conversely you can’t use
relative references to dynamic objects in pages served by the static server. In
these cases, fully qualified URIs are required.

Later we will explore a frontend/backend strategy that solves this problem.

The drawback is that you must maintain two machines, and this can get expen-
sive. Still, for extremely large projects, this is the best way to go. When the load
is high, it can be distributed across more than two machines.

One machine and two IP addresses

If you have only one machine but two IP addresses, you may tell each server to
bind to a different IP address, with the help of the BindAddress directive in httpd.
conf. You still have the problem of relative links here (solutions to which will be
presented later in this chapter). As we will show later, you can use the 127.0.0.1

404

| Chapter12: ServerSetup Strategies

%

é ,ch12.24057 Page 405 Thursday, November 18, 2004 12:41 PM

*

address for the backend server if the backend connections are proxied through
the frontend.

One machine, one IP address, and two ports
Finally, the most widely used approach uses only one machine and one NIC, but
binds the two servers to two different ports. Usually the static server listens on
the default port 80, and the dynamic server listens on some other, nonstandard
port.

Even here the problem of relative links is still relevant, since while the same IP
address is used, the port designators are different, which prevents you from
using relative links for both contents. For example, a URL to the static server
could be http://www.example.com/images/nav.png, while the dynamic page might
reside at hitp://'www.example.com:8000/perl/script.pl. Once again, the solutions
are around the corner.

Standalone mod_ perl-Enabled Apache
Server

The first and simplest scenario uses a straightforward, standalone, mod_perl-enabled
Apache server, as shown in Figure 12-1. Just take your plain Apache server and add
mod_perl, like you would add any other Apache module. Continue to run it at the
port it was using before. You probably want to try this before you proceed to more
sophisticated and complex techniques. This is the standard installation procedure we
described in Chapter 3.

- Request A' A' A'
!~~ d A B
4@/| —1T1

e
@/!; Caiv s
4@/ Response

httpd
. Apache and mod_perl
Clients example.com:80

Figure 12-1. mod_perl-enabled Apache server

A standalone server gives you the following advantages:

Simplicity
You just follow the installation instructions, configure it, restart the server, and
you are done.

Standalone mod_perl-Enabled Apache Server | 405

.
4~ ~4]e

é ,ch12.24057 Page 406 Thursday, November 18, 2004 12:41 PM

No network changes

You do not have to worry about using additional ports, as we will see later.

Speed

You get a very fast server for dynamic content, and you see an enormous
speedup compared to mod_cgi, from the first moment you start to use it.

The disadvantages of a standalone server are as follows:

* The process size of a mod_perl-enabled Apache server might be huge (maybe 4

MB at startup and growing to 10 MB or more, depending on how you use it)
compared to a typical plain Apache server (about 500 KB). Of course, if memory
sharing is in place, RAM requirements will be smaller.

You probably have a few dozen child processes. The additional memory require-
ments add up in direct relation to the number of child processes. Your memory
demands will grow by an order of magnitude, but this is the price you pay for
the additional performance boost of mod_perl. With memory being relatively
inexpensive nowadays, the additional cost is low—especially when you consider
the dramatic performance boost mod_perl gives to your services with every 100
MB of RAM you add.

While you will be happy to have these monster processes serving your scripts
with monster speed, you should be very worried about having them serve static
objects such as images and HTML files. Each static request served by a mod_
perl-enabled server means another large process running, competing for system
resources such as memory and CPU cycles. The real overhead depends on the
static object request rate. Remember that if your mod_perl code produces
HTML code that includes images, each of these will produce another static
object request. Having another plain web server to serve the static objects solves
this unpleasant problem. Having a proxy server as a frontend, caching the static
objects and freeing the mod_perl processes from this burden, is another solu-
tion. We will discuss both later.

Another drawback of this approach is that when serving output to a client with a
slow connection, the huge mod_perl-enabled server process (with all of its sys-
tem resources) will be tied up until the response is completely written to the cli-
ent. While it might take a few milliseconds for your script to complete the
request, there is a chance it will still be busy for a number of seconds or even
minutes if the request is from a client with a slow connection. As with the previ-
ous drawback, a proxy solution can solve this problem. We’ll discuss proxies
more later.

Proxying dynamic content is not going to help much if all the clients are on a fast
local net (for example, if you are administering an Intranet). On the contrary, it
can decrease performance. Still, remember that some of your Intranet users
might work from home through slow modem links.

406

| Chapter12: ServerSetup Strategies

%

é ,ch12.24057 Page 407 Thursday, November 18, 2004 12:41 PM

*

If you are new to mod_perl, this is probably the best way to get yourself started.

And of course, if your site is serving only mod_per! scripts (and close to zero static
objects), this might be the perfect choice for you!

Before trying the more advanced setup techniques we are going to talk about now,
it’s probably a good idea to review the simpler straightforward installation and con-
figuration techniques covered in Chapters 3 and 4. These will get you started with
the standard deployment discussed here.

One Plain and One mod_ perl-Enabled
Apache Server

As mentioned earlier, when running scripts under mod_per! you will notice that the
httpd processes consume a huge amount of virtual memory—from 5 MB-15 MB,
and sometimes even more. That is the price you pay for the enormous speed
improvements under mod_perl, mainly because the code is compiled once and needs
to be cached for later reuse. But in fact less memory is used if memory sharing takes
place. Chapter 14 covers this issue extensively.

Using these large processes to serve static objects such as images and HTML docu-
ments is overkill. A better approach is to run two servers: a very light, plain Apache
server to serve static objects and a heavier, mod_perl-enabled Apache server to serve
requests for dynamically generated objects. From here on, we will refer to these two
servers as httpd_docs (vanilla Apache) and httpd_perl (mod_perl-enabled Apache).
This approach is depicted in Figure 12-2.

The advantages of this setup are:
* The heavy mod_perl processes serve only dynamic requests, so fewer of these
large servers are deployed.

* MaxClients, MaxRequestsPerChild, and related parameters can now be optimally
tuned for both the httpd_docs and httpd_perl servers (something we could not do
before). This allows us to fine-tune the memory usage and get better server per-
formance.

Now we can run many lightweight httpd_docs servers and just a few heavy
httpd_perl servers.
The disadvantages are:
* The need for two configuration files, two sets of controlling scripts (startup/
shutdown), and watchdogs.

* If you are processing log files, you will probably have to merge the two separate
log files into one before processing them.

One Plain and One mod_perl-Enabled Apache Server | 407

%

ﬁ

*@%

é ,ch12.24057 Page 408 Thursday, November 18, 2004 12:41 PM

iy Static object A7 AT, A
Ny Request Y N N .
/’ A A A
\/@/\// S Y
e £ A
/’ Y N Y .
\/\/2'@’ Response / httpd_docs
~ R Apache
’ example.com:80
X <>
\/@/! Dynamic object
7 Request
.’ . A /% A
@/’| 2 W
@7/ httpd_perl
Response Apache and mod_perl
i example.com:8000
Clients

Figure 12-2. Standalone and mod_perl-enabled Apache servers

* Just as in the one-server approach, we still have the problem of a mod_perl pro-
cess spending its precious time serving slow clients when the processing portion
of the request was completed a long time ago. (Deploying a proxy, covered in
the next section, solves this problem.)

As with the single-server approach, this is not a major disadvantage if you are on
a fast network (i.e., an Intranet). It is likely that you do not want a buffering
server in this case.

Note that when a user browses static pages and the base URL in the browser’s loca-
tion window points to the static server (for example http://www.example.com/index.
html), all relative URLs (e.g.,) are being served by
the plain Apache server. But this is not the case with dynamically generated pages.
For example, when the base URL in the location window points to the dynamic
server (e.g., http://lwww.example.com:8000/perl/index.pl), all relative URLs in the
dynamically generated HTML will be served by heavy mod_perl processes.

You must use fully qualified URLs, not relative ones. http://lwww.example.com/icons/
arrow.gif is a full URL, while /icons/arrow.gif is a relative one. Using <base
href="http://www.example.com/"> in the generated HTML is another way to handle
this problem. Also, the httpd_perl server could rewrite the requests back to httpd_
docs (much slower) and you still need the attention of the heavy servers.

This is not an issue if you hide the internal port implementations, so the client sees
only one server running on port 80, as explained later in this chapter.

408 | Chapter12: ServerSetup Strategies

%

é ,ch12.24057 Page 409 Thursday, November 18, 2004 12:41 PM

Choosing the Target Installation Directories Layout

If you’re going to run two Apache servers, you’ll need two complete (and different)
sets of configuration, log, and other files. In this scenario we’ll use a dedicated root
directory for each server, which is a personal choice. You can choose to have both
servers living under the same root, but this may cause problems since it requires a
slightly more complicated configuration. This decision would allow you to share
some directories, such as include (which contains Apache headers), but this can
become a problem later, if you decide to upgrade one server but not the other. You
will have to solve the problem then, so why not avoid it in the first place?

First let’s prepare the sources. We will assume that all the sources go into the /home/
stas/src directory. Since you will probably want to tune each copy of Apache sepa-
rately, it is better to use two separate copies of the Apache source for this configura-
tion. For example, you might want only the httpd_docs server to be built with the
mod_rewrite module.

Having two independent source trees will prove helpful unless you use dynamically
shared objects (covered later in this chapter).

Make two subdirectories:

panic% mkdir /home/stas/src/httpd docs

panic% mkdir /home/stas/src/httpd_perl
Next, put the Apache source into the /home/stas/src/httpd_docs directory (replace 1.3.x
with the version of Apache that you have downloaded):

panic% cd /home/stas/src/httpd docs
panic% tar xvzf ~/src/apache_1.3.x.tar.gz

Now prepare the httpd_perl server sources:

panic% cd /home/stas/src/httpd perl
panic% tar xvzf ~/src/apache_1.3.x.tar.gz
panic% tar xvzf ~/src/modperl-1.xx.tar.gz

panic% 1s -1

drwxr-xr-x 8 stas stas 2048 Apr 29 17:38 apache_1.3.x/

drwxr-xr-x 8 stas stas 2048 Apr 29 17:38 modperl-1.xx/
We are going to use a default Apache directory layout and place each server direc-
tory under its dedicated directory. The two directories are:

/home/httpd/httpd_perl/

/home/httpd/httpd_docs/
We are using the user hitpd, belonging to the group httpd, for the web server. If you
don’t have this user and group created yet, add them and make sure you have the
correct permissions to be able to work in the /home/httpd directory.

One Plain and One mod_perl-Enabled Apache Server | 409

4~ ~4]e

é ,ch12.24057 Page 410 Thursday, November 18, 2004 12:41 PM

Configuration and Compilation of the Sources

Now we proceed to configure and compile the sources using the directory layout we
have just described.

Building the httpd_docs server
The first step is to configure the source:

panic% cd /home/stas/src/httpd docs/apache 1.3.x
panic% ./configure --prefix=/home/httpd/httpd docs \
--enable-module=rewrite --enable-module=proxy
We need the mod_rewrite and mod_proxy modules, as we will see later, so we tell
Jconfigure to build them in.

You might also want to add --layout, to see the resulting directories’ layout without
actually running the configuration process.

Next, compile and install the source:

panic% make
panic# make install

Rename httpd to httpd_docs:

panic% mv /home/httpd/httpd docs/bin/httpd \
/home/httpd/httpd_docs/bin/httpd docs
Now modify the apachectl utility to point to the renamed httpd via your favorite text
editor or by using Perl:
panic% perl -pi -e 's|bin/httpd|bin/httpd docs|' \
/home/httpd/httpd_docs/bin/apachectl
Another approach would be to use the --target option while configuring the source,
which makes the last two commands unnecessary.
panic% ./configure --prefix=/home/httpd/httpd_docs \
--target=httpd docs \
--enable-module=rewrite --enable-module=proxy
panic% make
panic# make install
Since we told ./configure that we want the executable to be called httpd_docs (via
--target=httpd_docs), it performs all the naming adjustments for us.

The only thing that you might find unusual is that apachectl will now be called
httpd_docsctl and the configuration file httpd.conf will now be called hitpd_docs.conf.

We will leave the decision making about the preferred configuration and installation
method to the reader. In the rest of this guide we will continue using the regular
names that result from using the standard configuration and the manual executable
name adjustment, as described at the beginning of this section.

410 | Chapter12: ServerSetup Strategies

4~ ~4]e

é ,ch12.24057 Page 411 Thursday, November 18, 2004 12:41 PM

Building the httpd_perl server

Now we proceed with the source configuration and installation of the httpd_perl
server.
panic% cd /home/stas/src/httpd_perl/mod_perl-1.xx
panic% perl Makefile.PL \
APACHE_SRC=../apache_1.3.x/src \
DO_HTTPD=1 USE_APACI=1 EVERYTHING=1 \

APACHE_PREFIX=/home/httpd/httpd perl \
APACI_ARGS='"--prefix=/home/httpd/httpd_perl'

If you need to pass any other configuration options to Apache’s ./configure, add them
after the --prefix option. For example:

APACI_ARGS="--prefix=/home/httpd/httpd _perl \
--enable-module=status’

Notice that just like in the httpd_docs configuration, you can use --target=httpd_perl.
Note that this option has to be the very last argument in APACI_ARGS; otherwise make
test tries to run httpd_perl, which fails.

Now build, test, and install httpd_perl.

panic% make && make test
panic# make install

Upon installation, Apache puts a stripped version of httpd at /home/httpd/httpd_perl/
bin/httpd. The original version, which includes debugging symbols (if you need to run
a debugger on this executable), is located at /home/stas/src/httpd_perl/apache_1.3.x/
src/httpd.

Now rename httpd to httpd_perl:

panic% mv /home/httpd/httpd_perl/bin/httpd \
/home/httpd/httpd perl/bin/httpd perl

and update the apachectl utility to drive the renamed hitpd:

panic% perl -p -i -e 's|bin/httpd|bin/httpd perl|" \
/home/httpd/httpd perl/bin/apachectl

Configuration of the Servers

When we have completed the build process, the last stage before running the servers
is to configure them.

Basic httpd_docs server configuration

Configuring the httpd_docs server is a very easy task. Open /home/httpd/httpd_docs/
conf/httpd.conf in your favorite text editor and configure it as you usually would.

One Plain and One mod_perl-Enabled Apache Server | 411

- ad

é ,ch12.24057 Page 412 Thursday, November 18, 2004 12:41 PM

Now you can start the server with:

/home/httpd/httpd_docs/bin/apachectl start

Basic httpd_perl server configuration

Now we edit the /home/httpd/httpd_perl/conf/httpd.conf file. The first thing to do is to
set a Port directive—it should be different from that used by the plain Apache server
(Port 80), since we cannot bind two servers to the same port number on the same IP
address. Here we will use 8000. Some developers use port 81, but you can bind to
ports below 1024 only if the server has root permissions. Also, if you are running on a
multiuser machine, there is a chance that someone already uses that port, or will start
using it in the future, which could cause problems. If you are the only user on your
machine, you can pick any unused port number, but be aware that many organiza-
tions use firewalls that may block some of the ports, so port number choice can be a
controversial topic. Popular port numbers include 80, 81, 8000, and 8080. In a two-
server scenario, you can hide the nonstandard port number from firewalls and users
by using either mod_proxy’s ProxyPass directive or a proxy server such as Squid.

Now we proceed to the mod_perl-specific directives. It’s a good idea to add them all
at the end of hitpd.conf, since you are going to fiddle with them a lot in the early
stages.

First, you need to specify where all the mod_perl scripts will be located. Add the fol-
lowing configuration directive:

mod_perl scripts will be called from

Alias /perl /home/httpd/httpd perl/perl
From now on, all requests for URISs starting with /perl will be executed under mod_
perl and will be mapped to the files in the directory /home/httpd/httpd_perl/perl.

Now configure the /perl location:

PerIModule Apache::Registry

<Location /perl>
#AllowOverride None
SetHandler perl-script
PerlHandler Apache::Registry
Options ExecCGI
PerlSendHeader On
Allow from all

</Location>

This configuration causes any script that is called with a path prefixed with /perl to
be executed under the Apache::Registry module and as a CGI script (hence the
ExecCGI—if you omit this option, the script will be printed to the user’s browser as
plain text or will possibly trigger a “Save As” window).

This is only a very basic configuration. Chapter 4 covers the rest of the details.

412 | Chapter12: ServerSetup Strategies

4~ ~4]e

é ,ch12.24057 Page 413 Thursday, November 18, 2004 12:41 PM

*

Once the configuration is complete, it’s a time to start the server with:

/home/httpd/httpd_perl/bin/apachectl start

One Light Non-Apache and One mod_ perl-
Enabled Apache Server

If the only requirement from the light server is for it to serve static objects, you can
get away with non-Apache servers, which have an even smaller memory footprint
and even better speed. Most of these servers don’t have the configurability and flexi-
bility provided by the Apache web server, but if those aren’t required, you might
consider using one of these alternatives as a server for static objects. To accomplish
this, simply replace the Apache web server that was serving the static objects with
another server of your choice.

Among the small memory—footprint and fast-speed servers, thttpd is one of the best
choices. It runs as a multithreaded single process and consumes about 250K of mem-
ory. You can find more information about this server at hitp://www.acme.com/
software/thttpd/. This site also includes a very interesting web server performance
comparison chart (http://'www.acme.com/software/thttpd/benchmarks.html).

Another good choice is the KHTTPd web server for Linux. kKHTTPd is different from
other web servers in that it runs from within the Linux kernel as a module (device-
driver). kHTTPd handles only static (file-based) web pages; it passes all requests for
non-static information to a regular user space web server such as Apache. For more
information, see http://www.fenrus.demon.nl/.

Boa is yet another very fast web server, whose primary design goals are speed and
security. According to http://www.boa.org/, Boa is capable of handling several thou-
sand hits per second on a 300-MHz Pentium and dozens of hits per second on a
lowly 20-MHz 386/SX.

Adding a Proxy Server in httpd Accelerator
Mode

We have already presented a solution with two servers: one plain Apache server,
which is very light and configured to serve static objects, and the other with mod_
perl enabled (very heavy) and configured to serve mod_perl scripts and handlers. We
named them httpd_docs and httpd_perl, respectively.

In the dual-server setup presented earlier, the two servers coexist at the same IP
address by listening to different ports: httpd_docs listens to port 80 (e.g., http://www.
example.com/images/test.gif) and httpd_perl listens to port 8000 (e.g., http://www.
example.com:8000/perl/test.pl). Note that we did not write http://www.example.com:80

Adding a Proxy Server in httpd Accelerator Mode | 413

%

ﬁ

*@%

é ,ch12.24057 Page 414 Thursday, November 18, 2004 12:41 PM

for the first example, since port 80 is the default port for the HTTP service. Later on,
we will change the configuration of the httpd_docs server to make it listen to port 81.

This section will attempt to convince you that you should really deploy a proxy
server in httpd accelerator mode. This is a special mode that, in addition to provid-
ing the normal caching mechanism, accelerates your CGI and mod_perl scripts by
taking the responsibility of pushing the produced content to the client, thereby free-
ing your mod_perl processes. Figure 12-3 shows a configuration that uses a proxy
server, a standalone Apache server, and a mod_perl-enabled Apache server.

Static object A7, AT, AT

- Request Rres Ses Ses \
?\@! 4‘1:11;_ S 4"‘j:.:;_

Mg D B B
X
\/@/\’ Response htﬁ’,’,‘f,;ﬂg“

Proxy port

- example.com:80
-y 80 P
Sy

\

! Dynamic object
Request
-~ 4
Y T £ 4T3 4
\/@/ a4

@/} httpd_perl

Response Apache and mod_perl
. example.com:8000
Clients

Figure 12-3. A proxy server, standalone Apache, and mod_perl-enabled Apache

The advantages of using the proxy server in conjunction with mod_perl are:

* You get all the benefits of the usual use of a proxy server that serves static
objects from the proxy’s cache. You get less I/O activity reading static objects
from the disk (the proxy serves the most “popular” objects from RAM—of
course you benefit more if you allow the proxy server to consume more RAM),
and since you do not wait for the I/O to be completed, you can serve static
objects much faster.

* You get the extra functionality provided by httpd accelerator mode, which makes
the proxy server act as a sort of output buffer for the dynamic content. The
mod_perl server sends the entire response to the proxy and is then free to deal
with other requests. The proxy server is responsible for sending the response to
the browser. This means that if the transfer is over a slow link, the mod_perl
server is not waiting around for the data to move.

414 | Chapter12: ServerSetup Strategies

4~ ~4]e

é ,ch12.24057 Page 415 Thursday, November 18, 2004 12:41 PM

* This technique allows you to hide the details of the server’s implementation.
Users will never see ports in the URLs (more on that topic later). You can have a
few boxes serving the requests and only one serving as a frontend, which spreads
the jobs between the servers in a way that you can control. You can actually shut
down a server without the user even noticing, because the frontend server will
dispatch the jobs to other servers. This is called load balancing—it’s too big an
issue to cover here, but there is plenty of information available on the Internet
(refer to the References section at the end of this chapter).

* For security reasons, using an httpd accelerator (or a proxy in httpd accelerator
mode) is essential because it protects your internal server from being directly
attacked by arbitrary packets. The httpd accelerator and internal server commu-
nicate only expected HTTP requests, and usually only specific URI namespaces
get proxied. For example, you can ensure that only URIs starting with /perl/ will
be proxied to the backend server. Assuming that there are no vulnerabilities that
can be triggered via some resource under /perl, this means that only your public
“bastion” accelerating web server can get hosed in a successful attack—your
backend server will be left intact. Of course, don’t consider your web server to
be impenetrable because it’s accessible only through the proxy. Proxying it
reduces the number of ways a cracker can get to your backend server; it doesn’t
eliminate them all.

Your server will be effectively impenetrable if it listens only on ports on your
localhost (127.0.0.1), which makes it impossible to connect to your backend
machine from the outside. But you don’t need to connect from the outside any-
more, as you will see when you proceed to this technique’s implementation notes.

In addition, if you use some sort of access control, authentication, and authori-
zation at the frontend server, it’s easy to forget that users can still access the
backend server directly, bypassing the frontend protection. By making the back-
end server directly inaccessible you prevent this possibility.

Of course, there are drawbacks. Luckily, these are not functionality drawbacks—
they are more administration hassles. The disadvantages are:

* You have another daemon to worry about, and while proxies are generally sta-
ble, you have to make sure to prepare proper startup and shutdown scripts,
which are run at boot and reboot as appropriate. This is something that you do
once and never come back to again. Also, you might want to set up the crontab
to run a watchdog script that will make sure that the proxy server is running and
restart it if it detects a problem, reporting the problem to the administrator on
the way. Chapter 5 explains how to develop and run such watchdogs.

* Proxy servers can be configured to be light or heavy. The administrator must
decide what gives the highest performance for his application. A proxy server
such as Squid is light in the sense of having only one process serving all requests,
but it can consume a lot of memory when it loads objects into memory for faster
service.

Adding a Proxy Server in httpd Accelerator Mode | 415

4~ ~4]e

é ,ch12.24057 Page 416 Thursday, November 18, 2004 12:41 PM

*

* If you use the default logging mechanism for all requests on the front- and back-
end servers, the requests that will be proxied to the backend server will be
logged twice, which makes it tricky to merge the two log files, should you want
to. Therefore, if all accesses to the backend server are done via the frontend
server, it’s the best to turn off logging of the backend server.

If the backend server is also accessed directly, bypassing the frontend server, you
want to log only the requests that don’t go through the frontend server. One way
to tell whether a request was proxied or not is to use mod_proxy_add_forward,
presented later in this chapter, which sets the HTTP header X-Forwarded-For for
all proxied requests. So if the default logging is turned off, you can add a custom
PerllLogHandler that logs only requests made directly to the backend server.

If you still decide to log proxied requests at the backend server, they might not
contain all the information you need, since instead of the real remote IP of the
user, you will always get the IP of the frontend server. Again, mod_proxy_add_
forward, presented later, provides a solution to this problem.

Let’s look at a real-world scenario that shows the importance of the proxy httpd
accelerator mode for mod_perl.

First let’s explain an abbreviation used in the networking world. If someone claims
to have a 56-kbps connection, it means that the connection is made at 56 kilobits per
second (~56,000 bits/sec). It’s not 56 kilobytes per second, but 7 kilobytes per sec-
ond, because 1 byte equals 8 bits. So don’t let the merchants fool you—your modem
gives you a 7 kilobytes-per-second connection at most, not 56 kilobytes per second,
as one might think.

Another convention used in computer literature is that 10 Kb usually means 10 kilo-
bits and 10 KB means 10 kilobytes. An uppercase B generally refers to bytes, and a
lowercase b refers to bits (K of course means kilo and equals 1,024 or 1,000, depend-
ing on the field in which it’s used). Remember that the latter convention is not fol-
lowed everywhere, so use this knowledge with care.

In the typical scenario (as of this writing), users connect to your site with 56-kbps
modems. This means that the speed of the user’s network link is 56/8 = 7 KB per sec-
ond. Let’s assume an average generated HTML page to be of 42 KB and an average
mod_perl script to generate this response in 0.5 seconds. How many responses could
this script produce during the time it took for the output to be delivered to the user?
A simple calculation reveals pretty scary numbers:

(42KB)/(0.5sx 7KB/s) = 12

Twelve other dynamic requests could be served at the same time, if we could let
mod_perl do only what it’s best at: generating responses.

This very simple example shows us that we need only one-twelfth the number of
children running, which means that we will need only one-twelfth of the memory.

416 | Chapter12: ServerSetup Strategies

%

ﬁ

*@%

é ,ch12.24057 Page 417 Thursday, November 18, 2004 12:41 PM

*

But you know that nowadays scripts often return pages that are blown up with Java-
Script and other code, which can easily make them 100 KB in size. Can you calculate
what the download time for a file that size would be?

Furthermore, many users like to open multiple browser windows and do several
things at once (e.g., download files and browse graphically heavy sites). So the speed
of 7 KB/sec we assumed before may in reality be 5-10 times slower. This is not good
for your server.

Considering the last example and taking into account all the other advantages that
the proxy server provides, we hope that you are convinced that despite a small
administration overhead, using a proxy is a good thing.

Of course, if you are on a very fast local area network (LAN) (which means that all
your users are connected from this network and not from the outside), the big bene-
fit of the proxy buffering the output and feeding a slow client is gone. You are proba-
bly better off sticking with a straight mod_perl server in this case.

Two proxy implementations are known to be widely used with mod_perl: the
Squid proxy server and the mod_proxy Apache module. We’ll discuss these in the
next sections.

The Squid Server and mod_ perl

To give you an idea of what Squid is, we will reproduce the following bullets from
Squid’s home page (http://www.squid-cache.org/):
Squid is...
* A full-featured web proxy cache
* Designed to run on Unix systems
* Free, open source software
* The result of many contributions by unpaid volunteers
* Funded by the National Science Foundation
Squid supports...
* Proxying and caching of HTTP, FTP, and other URLs
* Proxying for SSL
* Cache hierarchies
* ICP, HTCP, CARP, and Cache Digests
* Transparent caching
* WCCP (Squid v2.3)
* Extensive access controls

* hitpd server acceleration

The Squid Server and mod_perl | 417

%

ﬁ

.

é ,ch12.24057 Page 418 Thursday, November 18, 2004 12:41 PM

*

SNMP
Caching of DNS lookups

Pros and Cons

The advantages of using Squid are:

Caching of static objects. These are served much faster, assuming that your
cache size is big enough to keep the most frequently requested objects in the
cache.

Buffering of dynamic content. This takes the burden of returning the content
generated by mod_perl servers to slow clients, thus freeing mod_perl servers
from waiting for the slow clients to download the data. Freed servers immedi-
ately switch to serve other requests; thus, your number of required servers goes
down dramatically.

Nonlinear URL space/server setup. You can use Squid to play some tricks with
the URL space and/or domain-based virtual server support.

The disadvantages are:

Buffering limit. By default, Squid buffers in only 16 KB chunks, so it will not
allow mod_perl to complete immediately if the output is larger. (READ_AHEAD GAP,
which is 16 KB by default, can be enlarged in defines.h if your OS allows that.)

Speed. Squid is not very fast when compared with the plain file-based web serv-
ers available today. Only if you are using a lot of dynamic features, such as with
mod_perl, is there a reason to use Squid, and then only if the application and the
server are designed with caching in mind.

Memory usage. Squid uses quite a bit of memory. It can grow three times bigger
than the limit provided in the configuration file.

HTTP protocol level. Squid is pretty much an HTTP/1.0 server, which seriously
limits the deployment of HTTP/1.1 features, such as KeepAlives.

HTTP headers, dates, and freshness. The Squid server might give out stale pages,
confusing downstream/client caches. This might happen when you update some
documents on the site—Squid will continue serve the old ones until you explic-
itly tell it which documents are to be reloaded from disk.

Stability. Compared to plain web servers, Squid is not the most stable.

The pros and cons presented above indicate that you might want to use Squid for its
dynamic content—buffering features, but only if your server serves mostly dynamic
requests. So in this situation, when performance is the goal, it is better to have a plain
Apache server serving static objects and Squid proxying only the mod_perl-enabled
server. This means that you will have a triple server setup, with frontend Squid proxy-
ing the backend light Apache server and the backend heavy mod_perl server.

418

| Chapter12: ServerSetup Strategies

%

ﬁ

*@%

é ,ch12.24057 Page 419 Thursday, November 18, 2004 12:41 PM

*

Light Apache, mod_perl, and Squid Setup Implementation
Details

You will find the installation details for the Squid server on the Squid web site (http://
www.squid-cache.org/). In our case it was preinstalled with Mandrake Linux. Once
you have Squid installed, you just need to modify the default squid.conf file (which
on our system was located at /etc/squid/squid.conf), as we will explain now, and
you’ll be ready to run it.

Before working on Squid’s configuration, let’s take a look at what we are already
running and what we want from Squid.

Previously we had the httpd_docs and httpd_perl servers listening on ports 80 and
8000, respectively. Now we want Squid to listen on port 80 to forward requests for
static objects (plain HTML pages, images, and so on) to the port to which the httpd_
docs server listens, and dynamic requests to httpd_perl’s port. We also want Squid to
collect the generated responses and deliver them to the client. As mentioned before,
this is known as httpd accelerator mode in proxy dialect.

We have to reconfigure the httpd_docs server to listen to port 81 instead, since port
80 will be taken by Squid. Remember that in our scenario both copies of Apache will
reside on the same machine as Squid. The server configuration is illustrated in
Figure 12-4.

Static object A7, AT, AT

m; g
. - v A B B |
g |

@4@/ Response .~ htng‘iiggcs

. p
Squlgoport example.com:80
e

4@/@/ ! Dynamic object
~ \/ Request
,” A B B |

4@/ . /.
Y4 / httpd_perl

Response Apache and mod_perl
example.com:8000

Clients

Figure 12-4. A Squid proxy server, standalone Apache, and mod_perl-enabled Apache

A proxy server makes all the magic behind it transparent to users. Both Apache serv-
ers return the data to Squid (unless it was already cached by Squid). The client never

The Squid Server and mod_perl | 419

%

ﬁ

*%

é ,ch12.24057 Page 420 Thursday, November 18, 2004 12:41 PM

sees the actual ports and never knows that there might be more than one server run-
ning. Do not confuse this scenario with mod_rewrite, where a server redirects the
request somewhere according to the rewrite rules and forgets all about it (i.e., works
as a one-way dispatcher, responsible for dispatching the jobs but not for collecting
the results).

Squid can be used as a straightforward proxy server. ISPs and big companies gener-
ally use it to cut down the incoming traffic by caching the most popular requests.
However, we want to run it in httpd accelerator mode. Two configuration directives,
httpd accel host and httpd accel port, enable this mode. We will see more details
shortly.

If you are currently using Squid in the regular proxy mode, you can extend its func-
tionality by running both modes concurrently. To accomplish this, you can extend
the existing Squid configuration with httpd accelerator mode’s related directives or
you can just create a new configuration from scratch.

Let’s go through the changes we should make to the default configuration file. Since
the file with default settings (/etc/squid/squid.conf) is huge (about 60 KB) and we will
not alter 95% of its default settings, our suggestion is to write a new configuration
file that includes the modified directives.”

First we want to enable the redirect feature, so we can serve requests using more than
one server (in our case we have two: the httpd_docs and httpd_perl servers). So we
specify httpd accel host as virtual. (This assumes that your server has multiple
interfaces—Squid will bind to all of them.)

httpd_accel host virtual

Then we define the default port to which the requests will be sent, unless they’re
redirected. We assume that most requests will be for static documents (also, it’s eas-
ier to define redirect rules for the mod_perl server because of the URI that starts with
/perl or similar). We have our httpd_docs listening on port 81:

httpd accel port 81
And Squid listens to port 80:
http_port 80

We do not use icp (icp is used for cache sharing between neighboring machines,
which is more relevant in the proxy mode):

icp_port o

hierarchy stoplist defines a list of words that, if found in a URL, cause the object to
be handled directly by the cache. Since we told Squid in the previous directive that

* The configuration directives we use are correct for Squid Cache Version 2.4STABLEL. It’s possible that the
configuration directives might change in new versions of Squid.

420 | Chapter12: ServerSetup Strategies

4~ ~4]e

é ,ch12.24057 Page 421 Thursday, November 18, 2004 12:41 PM

we aren’t going to share the cache between neighboring machines, this directive is
irrelevant. In case you do use this feature, make sure to set this directive to some-
thing like:

hierarchy stoplist /cgi-bin /perl

where /cgi-bin and /perl are aliases for the locations that handle the dynamic
requests.

Now we tell Squid not to cache dynamically generated pages:

acl QUERY urlpath regex /cgi-bin /perl

no_cache deny QUERY
Please note that the last two directives are controversial ones. If you want your
scripts to be more compliant with the HTTP standards, according to the HTTP spec-
ification, the headers of your scripts should carry the caching directives: Last-
Modified and Expires.

What are they for? If you set the headers correctly, there is no need to tell the Squid
accelerator not to try to cache anything. Squid will not bother your mod_perl servers
a second time if a request is (a) cacheable and (b) still in the cache. Many mod_perl
applications will produce identical results on identical requests if not much time has
elapsed between the requests. So your Squid proxy might have a hit ratio of 50%,
which means that the mod_perl servers will have only half as much work to do as
they did before you installed Squid (or mod_proxy).

But this is possible only if you set the headers correctly. Refer to Chapter 16 to learn
more about generating the proper caching headers under mod_perl. In the case
where only the scripts under /perl/caching-unfriendly are not caching-friendly, fix the
above setting to be:

acl QUERY urlpath regex /cgi-bin /perl/caching-unfriendly

no_cache deny QUERY
If you are lazy, or just have too many things to deal with, you can leave the above
directives the way we described. Just keep in mind that one day you will want to
reread this section to squeeze even more power from your servers without investing
money in more memory and better hardware.

While testing, you might want to enable the debugging options and watch the log
files in the directory /var/log/squid/. But make sure to turn debugging off in your pro-
duction server. Below we show it commented out, which makes it disabled, since it’s
disabled by default. Debug option 28 enables the debugging of the access-control
routes; for other debug codes, see the documentation embedded in the default con-
figuration file that comes with Squid.

debug_options 28

We need to provide a way for Squid to dispatch requests to the correct servers. Static
object requests should be redirected to httpd_docs unless they are already cached,

The Squid Server and mod_perl | 421

- ad

é ,ch12.24057 Page 422 Thursday, November 18, 2004 12:41 PM

while requests for dynamic documents should go to the httpd_perl server. The con-
figuration:

redirect _program /usr/lib/squid/redirect.pl

redirect children 10

redirect rewrites host header off
tells Squid to fire off 10 redirect daemons at the specified path of the redirect dae-
mon and (as suggested by Squid’s documentation) disables rewriting of any Host:
headers in redirected requests. The redirection daemon script is shown later, in
Example 12-1.

The maximum allowed request size is in kilobytes, which is mainly useful during PUT
and POST requests. A user who attempts to send a request with a body larger than this
limit receives an “Invalid Request” error message. If you set this parameter to 0, there
will be no limit imposed. If you are using POST to upload files, then set this to the
largest file’s size plus a few extra kilobytes:

request_body max_size 1000 KB

Then we have access permissions, which we will not explain here. You might want to
read the documentation, so as to avoid any security problems.

acl all src 0.0.0.0/0.0.0.0

acl manager proto cache object

acl localhost src 127.0.0.1/255.255.255.255

acl myserver src 127.0.0.1/255.255.255.255

acl SSL ports port 443 563

acl Safe ports port 80 81 8080 81 443 563
acl CONNECT method CONNECT

http_access allow manager localhost
http_access allow manager myserver
http_access deny manager
http_access deny !Safe_ports
http_access deny CONNECT !SSL ports
http_access allow all

Since Squid should be run as a non-root user, you need these settings:

cache_effective user squid
cache_effective group squid

if you are invoking Squid as root. The user squid is usually created when the Squid
server is installed.

Now configure a memory size to be used for caching;:
cache_mem 20 MB

The Squid documentation warns that the actual size of Squid can grow to be three
times larger than the value you set.

You should also keep pools of allocated (but unused) memory available for future
use:

memory pools on

422 | Chapter12: ServerSetup Strategies

4~ ~4]e

é ,ch12.24057 Page 423 Thursday, November 18, 2004 12:41 PM

(if you have the memory available, of course—otherwise, turn it off).

Now tighten the runtime permissions of the cache manager CGI script (cachemgr.cgi,
which comes bundled with Squid) on your production server:

cachemgr_passwd disable shutdown

If you are not using this script to manage the Squid server remotely, you should dis-
able it:

cachemgr passwd disable all

Put the redirection daemon script at the location you specified in the redirect
program parameter in the configuration file, and make it executable by the web server
(see Example 12-1).

Example 12-1. redirect.pl

#!/usx/bin/perl -p
BEGIN { $|=1 }
s |www. example.com(?::81)?/perl/ |www.example.com:8000/perl/|;

The regular expression in this script matches all the URIs that include either the
string “www.example.com/perl/” or the string “www.example.com:81/perl/” and
replaces either of these strings with “www.example.com:8080/perl”. No matter
whether the regular expression worked or not, the $ variable is automatically
printed, thanks to the -p switch.

You must disable buffering in the redirector script. $|=1; does the job. If you do not
disable buffering, STDOUT will be flushed only when its buffer becomes full—and its
default size is about 4,096 characters. So if you have an average URL of 70 charac-
ters, only after about 59 (4,096/70) requests will the buffer be flushed and will the
requests finally reach the server. Your users will not wait that long (unless you have
hundreds of requests per second, in which case the buffer will be flushed very fre-
quently because it’ll get full very fast).

If you think that this is a very ineffective way to redirect, you should consider the fol-
lowing explanation. The redirector runs as a daemon; it fires up N redirect daemons,
so there is no problem with Perl interpreter loading. As with mod_perl, the Perl
interpreter is always present in memory and the code has already been compiled, so
the redirect is very fast (not much slower than if the redirector was written in C).
Squid keeps an open pipe to each redirect daemon; thus, the system calls have no
overhead.

Now it is time to restart the server:
/etc/rc.d/init.d/squid restart
Now the Squid server setup is complete.

If on your setup you discover that port 81 is showing up in the URLs of the static
objects, the solution is to make both the Squid and httpd_docs servers listen to the

The Squid Serverand mod_perl | 423

- ad

é ,ch12.24057 Page 424 Thursday, November 18, 2004 12:41 PM

same port. This can be accomplished by binding each one to a specific interface (so
they are listening to different sockets). Modify httpd_docs/conf/httpd.conf as follows:
Port 80
BindAddress 127.0.0.1
Listen 127.0.0.1:80
Now the httpd_docs server is listening only to requests coming from the local server.
You cannot access it directly from the outside. Squid becomes a gateway that all the
packets go through on the way to the httpd_docs server.

Modify squid.conf as follows:

http_port example.com:80

tcp outgoing address 127.0.0.1

httpd_accel_host 127.0.0.1

httpd_accel port 80
It’s important that http_port specifies the external hostname, which doesn’t map to
127.0.0.1, because otherwise the httpd_docs and Squid server cannot listen to the
same port on the same address.

Now restart the Squid and httpd_docs servers (it doesn’t matter which one you start
first), and voila—the port number is gone.

You must also have the following entry in the file /etc/hosts (chances are that it’s
already there):

127.0.0.1 localhost.localdomain localhost

Now if your scripts are generating HTML including fully qualified self references,
using 8000 or the other port, you should fix them to generate links to point to port
80 (which means not using the port at all in the URI). If you do not do this, users will
bypass Squid and will make direct requests to the mod_perl server’s port. As we will
see later, just like with httpd_docs, the hitpd_perl server can be configured to listen
only to requests coming from localhost (with Squid forwarding these requests from
the outside). Then users will not be able to bypass Squid.

The whole modified squid.conf file is shown in Example 12-2.

Example 12-2. squid.conf

http_port example.com:80

tcp _outgoing address 127.0.0.1
httpd_accel host 127.0.0.1
httpd accel port 8o

icp _port o

acl QUERY urlpath_regex /cgi-bin /perl
no_cache deny QUERY

debug_options 28

424 | Chapter12: ServerSetup Strategies

é ,ch12.24057 Page 425 Thursday, November 18, 2004 12:41 PM

Example 12-2. squid.conf (continued)

redirect_program /usr/lib/squid/redirect.pl
redirect children 10
redirect rewrites host header off

request_body max_size 1000 KB

acl all src 0.0.0.0/0.0.0.0

acl manager proto cache object

acl localhost src 127.0.0.1/255.255.255.255
acl myserver src 127.0.0.1/255.255.255.255
acl SSL ports port 443 563

acl Safe ports port 80 81 8080 8081 443 563
acl CONNECT method CONNECT

http_access allow manager localhost
http_access allow manager myserver
http_access deny manager
http_access deny !Safe_ports
http_access deny CONNECT !SSL ports
http_access allow all

cache_effective user squid
cache_effective group squid

cache_mem 20 MB
memory_pools on

cachemgr passwd disable shutdown

mod_ perl and Squid Setup Implementation Details

When one of the authors was first told about Squid, he thought: “Hey, now I can
drop the htitpd_docs server and have just Squid and the httpd_perl servers. Since all
static objects will be cached by Squid, there is no more need for the light httpd_docs
server.”

But he was a wrong. Why? Because there is still the overhead of loading the objects
into the Squid cache the first time. If a site has many static objects, unless a huge
chunk of memory is devoted to Squid, they won’t all be cached, and the heavy mod_
perl server will still have the task of serving these objects.

How do we measure the overhead? The difference between the two servers is in
memory consumption; everything else (e.g., I/O) should be equal. So you have to
estimate the time needed to fetch each static object for the first time at a peak period,
and thus the number of additional servers you need for serving the static objects.
This will allow you to calculate the additional memory requirements. This amount
can be significant in some installations.

The Squid Serverand mod_perl | 425

4~ ~4]e

% é ,ch12.24057 Page 426 Thursday, November 18, 2004 12:41 PM

So on our production servers we have decided to stick with the Squid, httpd_docs,
and httpd_perl scenario, where we can optimize and fine-tune everything. But if in
your case there are almost no static objects to serve, the httpd_docs server is defi-
nitely redundant; all you need are the mod_perl server and Squid to buffer the out-
put from it.

If you want to proceed with this setup, install mod_perl-enabled Apache and Squid.
Then use a configuration similar to that in the previous section, but without httpd_
docs (see Figure 12-5). Also, you do not need the redirector any more, and you
should specify httpd accel host as a name of the server instead of virtual. Because
you do not redirect, there is no need to bind two servers on the same port, so you
also don’t need the Bind or Listen directives in httpd.conf.

Dynamic object
Request

Squldport " " "

httpd_perl
Response Apache andmod_perl
example.com:8000

Clients

Figure 12-5. A Squid proxy server and mod_perl-enabled Apache

The modified configuration for this simplified setup is given in Example 12-3 (see the
explanations in the previous section).

Example 12-3. squid2.conf

httpd accel host example.com
httpd_accel port 8000
http_port 80

icp_port o

acl QUERY urlpath_regex /cgi-bin /perl
no_cache deny QUERY

debug_options 28

426 | Chapter12: ServerSetup Strategies

4~ ~4]e

é ,ch12.24057 Page 427 Thursday, November 18, 2004 12:41 PM

Example 12-3. squid2.conf (continued)

redirect_program /usr/lib/squid/redirect.pl
redirect_children 10
redirect rewrites host header off

request_body max_size 1000 KB

acl all src 0.0.0.0/0.0.0.0

acl manager proto cache object

acl localhost src 127.0.0.1/255.255.255.255
acl myserver src 127.0.0.1/255.255.255.255
acl SSL ports port 443 563

acl Safe ports port 80 81 8080 8081 443 563
acl CONNECT method CONNECT

http_access allow manager localhost
http_access allow manager myserver
http_access deny manager
http_access deny !Safe_ports
http_access deny CONNECT !SSL ports
http_access allow all

cache_effective user squid
cache_effective group squid

cache_mem 20 MB
memory_pools on

cachemgr passwd disable shutdown

Apache’s mod_ proxy Module

Apache’s mod_proxy module implements a proxy and cache for Apache. It imple-
ments proxying capabilities for the following protocols: FTP, CONNECT (for SSL),
HTTP/0.9, HTTP/1.0, and HTTP/1.1. The module can be configured to connect to
other proxy modules for these and other protocols.

mod_proxy is part of Apache, so there is no need to install a separate server—you
just have to enable this module during the Apache build process or, if you have
Apache compiled as a DSO, you can compile and add this module after you have
completed the build of Apache.

A setup with a mod_proxy-enabled server and a mod_perl-enabled server is depicted
in Figure 12-6.

We do not think the difference in speed between Apache’s mod_proxy and Squid is
relevant for most sites, since the real value of what they do is buffering for slow cli-
ent connections. However, Squid runs as a single process and probably consumes
fewer system resources.

Apache’s mod_proxy Module | 427

4~ ~4]e

é ,ch12.24057 Page 428 Thursday, November 18, 2004 12:41 PM

Request A A A

~
SV Sy “hv
L7 1

~ . B B 3
’~ vVEYE Y

’ httpd_docs
4

Aplache o0
T~ example.com:
!~ g v
gt | 1 2 g
I g
!!.’ 4_
I~ LYA NN
httpd_perl
Apache and mod_perl
example.com:8000

Clients

Figure 12-6. mod_proxy-enabled Apache and mod_perl-enabled Apache

The trade-off is that mod_rewrite is easy to use if you want to spread parts of the site
across different backend servers, while mod_proxy knows how to fix up redirects
containing the backend server’s idea of the location. With Squid you can run a redi-
rector process to proxy to more than one backend, but there is a problem in fixing
redirects in a way that keeps the client’s view of both server names and port num-
bers in all cases.

The difficult case is where you have DNS aliases that map to the same IP address,
you want them redirected to port 80 (although the server is on a different port), and
you want to keep the specific name the browser has already sent so that it does not
change in the client’s browser’s location window.

The advantages of mod_proxy are:

* No additional server is needed. We keep the plain one plus one mod_perl-
enabled Apache server. All you need is to enable mod_proxy in the httpd_docs
server and add a few lines to the httpd.conf file.

ProxyPass /perl/ http://localhost:81/perl/

ProxyPassReverse /perl/ http://localhost:81/perl/
The ProxyPass directive triggers the proxying process. A request for http://example.
com/perl/ is proxied by issuing a request for http://localhost:81/perl/ to the mod_
perl server. mod_proxy then sends the response to the client. The URL rewriting is

428 | Chapter12: ServerSetup Strategies

- ad

é ,ch12.24057 Page 429 Thursday, November 18, 2004 12:41 PM

transparent to the client, except in one case: if the mod_perl server issues a redi-
rect, the URL to redirect to will be specified in a Location header in the response.
This is where ProxyPassReverse kicks in: it scans Location headers from the
responses it gets from proxied requests and rewrites the URL before forwarding
the response to the client.

* It buffers mod_perl output like Squid does.

* It does caching, although you have to produce correct Content-Length, Last-
Modified, and Expires HTTP headers for it to work. If some of your dynamic
content does not change frequently, you can dramatically increase performance
by caching it with mod_proxy.

* ProxyPass happens before the authentication phase, so you do not have to worry
about authenticating twice.

* Apache is able to accelerate secure HTTP requests completely, while also doing
accelerated HTTP. With Squid you have to use an external redirection program
for that.

* The latest mod_proxy module (for Apache 1.3.6 and later) is reported to be very
stable.

Concepts and Configuration Directives

In the following explanation, we will use www.example.com as the main server users
access when they want to get some kind of service and backend.example.com as the
machine that does the heavy work. The main and backend servers are different; they
may or may not coexist on the same machine.

We'll use the mod_proxy module built into the main server to handle requests to
www.example.com. For the sake of this discussion it doesn’t matter what functional-
ity is built into the backend.example.com server—obviously it’ll be mod_perl for
most of us, but this technique can be successfully applied to other web program-
ming languages (PHP, Java, etc.).

ProxyPass

You can use the ProxyPass configuration directive to map remote hosts into the URL
space of the local server; the local server does not act as a proxy in the conventional
sense, but appears to be a mirror of the remote server.

Let’s explore what this rule does:
ProxyPass /perl/ http://backend.example.com/perl/

When a user initiates a request to http://www.example.com/perl/foo.pl, the request is
picked up by mod_proxy. It issues a request for http://backend.example.com/perl/foo.pl
and forwards the response to the client. This reverse proxy process is mostly transpar-
ent to the client, as long as the response data does not contain absolute URLs.

Apache’s mod_proxy Module | 429

- ad

é ,ch12.24057 Page 430 Thursday, November 18, 2004 12:41 PM

One such situation occurs when the backend server issues a redirect. The URL to
redirect to is provided in a Location header in the response. The backend server will
use its own ServerName and Port to build the URL to redirect to. For example, mod_
dir will redirect a request for hitp://www.example.com/somedir/ to http://backend.
example.com/somedir/ by issuing a redirect with the following header:

Location: http://backend.example.com/somedir/

Since ProxyPass forwards the response unchanged to the client, the user will see
http://backend.example.com/somedir/ in her browser’s location window, instead of
http://www.example.com/somedir/.

You have probably noticed many examples of this from real-life web sites you’ve vis-
ited. Free email service providers and other similar heavy online services display the
login or the main page from their main server, and then when you log in you see
something like x11.example.com, then w59.example.com, etc. These are the backend
servers that do the actual work.

Obviously this is not an ideal solution, but since users don’t usually care about what
they see in the location window, you can sometimes get away with this approach. In
the following section we show a better solution that solves this issue and provides
even more useful functionalities.

ProxyPassReverse

This directive lets Apache adjust the URL in the Location header on HTTP redirect
responses. This is essential when Apache is used as a reverse proxy to avoid bypass-
ing the reverse proxy because of HTTP redirects on the backend servers. It is gener-
ally used in conjunction with the ProxyPass directive to build a complete frontend
Proxy server.

ProxyPass /perl/ http://backend.example.com/perl/

ProxyPassReverse /perl/ http://backend.example.com/perl/
When a user initiates a request to hitp://'www.example.com/perl/foo, the request is
proxied to http://backend.example.com/perl/foo. Let’s say the backend server
responds by issuing a redirect for http://backend.example.com/perl/foo/ (adding a
trailing slash). The response will include a Location header:

Location: http://backend.example.com/perl/foo/
ProxyPassReverse on the frontend server will rewrite this header to:
Location: http://www.example.com/perl/foo/

This happens completely transparently. The end user is never aware of the URL
rewrites happening behind the scenes.

Note that this ProxyPassReverse directive can also be used in conjunction with the
proxy pass-through feature of mod_rewrite, described later in this chapter.

430 | Chapter12: ServerSetup Strategies

4~ ~4]e

é ,ch12.24057 Page 431 Thursday, November 18, 2004 12:41 PM

*

Security issues

Whenever you use mod_proxy you need to make sure that your server will not
become a proxy for freeriders. Allowing clients to issue proxy requests is controlled
by the ProxyRequests directive. Its default setting is Off, which means proxy requests
are handled only if generated internally (by ProxyPass or RewriteRule...[P] direc-
tives). Do not use the ProxyRequests directive on your reverse proxy servers.

Knowing the Proxypassed Connection Type

Let’s say that you have a frontend server running mod_ssl, mod_rewrite, and mod_
proxy. You want to make sure that your user is using a secure connection for some
specific actions, such as login information submission. You don’t want to let the user
log in unless the request was submitted through a secure port.

Since you have to proxypass the request between the frontend and backend servers,
you cannot know where the connection originated. The HTTP headers cannot reli-
ably provide this information.

A possible solution for this problem is to have the mod_perl server listen on two dif-
ferent ports (e.g., 8000 and 8001) and have the mod_rewrite proxy rule in the regu-
lar server redirect to port 8000 and the mod_rewrite proxy rule in the SSL virtual
host redirect to port 8001. Under the mod_perl server, use $r->connection->port or
the environment variable PORT to tell if the connection is secure.

Buffering Feature

In addition to correcting the URI on its way back from the backend server, mod_
proxy, like Squid, also provides buffering services that benefit mod_perl and similar
heavy modules. The buffering feature allows mod_perl to pass the generated data to
mod_proxy and move on to serve new requests, instead of waiting for a possibly
slow client to receive all the data.

Figure 12-7 depicts this feature.

Client
Apache Kernel Kernel [m:('i)ad::x 1 Kernel
[mod_perl] [sendbuf] = TCP/IP [recvbuf] blrf'f)er ¥ [sendbuf] TCP/IP

Figure 12-7. mod_proxy buffering

mod_perl streams the generated response into the kernel send buffer, which in turn
goes into the kernel receive buffer of mod_proxy via the TCP/IP connection. mod_
proxy then streams the file into the kernel send buffer, and the data goes to the cli-
ent over the TCP/IP connection. There are four buffers between mod_perl and the

Apache’s mod_proxy Module | 431

%

ﬁ

*@%

é ,ch12.24057 Page 432 Thursday, November 18, 2004 12:41 PM

*

client: two kernel send buffers, one receive buffer, and finally the mod_proxy user
space buffer. Each of those buffers will take the data from the previous stage, as long
as the buffer is not full. Now it’s clear that in order to immediately release the mod_
perl process, the generated response should fit into these four buffers.

If the data doesn’t fit immediately into all buffers, mod_perl will wait until the first
kernel buffer is emptied partially or completely (depending on the OS implementa-
tion) and then place more data into it. mod_perl will repeat this process until the last
byte has been placed into the buffer.

The kernel’s receive buffers (recvbuf) and send buffers (sendbuf) are used for differ-
ent things: the receive buffers are for TCP data that hasn’t been read by the applica-
tion yet, and the send buffers are for application data that hasn’t been sent over the
network yet. The kernel buffers actually seem smaller than their declared size,
because not everything goes to actual TCP/IP data. For example, if the size of the
buffer is 64 KB, only about 55 KB or so can actually be used for data. Of course, the
overhead varies from OS to OS.

It might not be a very good idea to increase the kernel’s receive buffer too much,
because you could just as easily increase mod_proxy’s user space buffer size and get
the same effect in terms of buffering capacity. Kernel memory is pinned (not swappa-
ble), so it’s harder on the system to use a lot of it.

The user space buffer size for mod_proxy seems to be fixed at 8 KB, but changing it
is just a matter of replacing HUGE_STRING LEN with something else in src¢/modules/
proxy/proxy_http.c under the Apache source distribution.

mod_proxy’s receive buffer is configurable by the ProxyReceiveBufferSize parame-
ter. For example:

ProxyReceiveBufferSize 16384

will create a buffer 16 KB in size. ProxyReceiveBufferSize must be bigger than or
equal to 512 bytes. If it’s not set or is set to 0, the system default will be used. The
number it’s set to should be an integral multiple of 512. ProxyReceiveBufferSize can-
not be bigger than the kernel receive buffer size; if you set the value of
ProxyReceiveBufferSize larger than this size, the default value will be used (a warn-
ing will be printed in this case by mod_proxy).

You can modify the source code to adjust the size of the server’s internal read-write
buffers by changing the definition of I0BUFSIZE in include/httpd.h.

Unfortunately, you cannot set the kernel buffers’ sizes as large as you might want
because there is a limit to the available physical memory and OSes have their own
upper limits on the possible buffer size. To increase the physical memory limits, you
have to add more RAM. You can change the OS limits as well, but these procedures
are very specific to OSes. Here are some of the OSes and the procedures to increase
their socket buffer sizes:

432 | Chapter12: ServerSetup Strategies

%

ﬁ

*@%

é ,ch12.24057 Page 433 Thursday, November 18, 2004 12:41 PM

Linux
For 2.2 kernels, the maximum limit for receive buffer size is set in /proc/sys/net/
core/rmem_max and the default value is in /proc/sys/net/core/rmem_default. 1f
you want to increase the rcvbuf size above 65,535 bytes, the default maximum
value, you have to first raise the absolute limit in /proc/sys/net/core/rmem_max.
At runtime, execute this command to raise it to 128 KB:
panic# echo 131072 > /proc/sys/net/core/rmem_max

You probably want to put this command into /etc/rc.d/rc.local (or elsewhere,
depending on the operating system and the distribution) or a similar script that
is executed at server startup, so the change will take effect at system reboot.

For the 2.2.5 kernel, the maximum and default values are either 32 KB or 64 KB.
You can also change the default and maximum values during kernel compila-
tion; for that, you should alter the SK_RMEM DEFAULT and SK_RMEM_MAX definitions,
respectively. (Since kernel source files tend to change, use the grep(1) utility to

find the files.)

The same applies for the write buffers. You need to adjust /proc/sys/net/core/
wmem_max and possibly the default value in /proc/sys/net/core/wmem_default. 1f
you want to adjust the kernel configuration, you have to adjust the SK_WMEM_
DEFAULT and SK_WMEM MAX definitions, respectively.

FreeBSD
Under FreeBSD it’s possible to configure the kernel to have bigger socket buff-
ers:
panic# sysctl -w kern.ipc.maxsockbuf=2621440
Solaris

Under Solaris this upper limit is specified by the tcp max_buf parameter; its
default value is 256 KB.

This buffering technique applies only to downstream data (data coming from the ori-
gin server to the proxy), not to upstream data. When the server gets an incoming
stream, because a request has been issued, the first bits of data hit the mod_perl server
immediately. Afterward, if the request includes a lot of data (e.g., a big POST request,
usually a file upload) and the client has a slow connection, the mod_perl process will
stay tied, waiting for all the data to come in (unless it decides to abort the request for
some reason). Falling back on mod_cgi seems to be the best solution for specific scripts
whose major function is receiving large amounts of upstream data. Another alternative
is to use yet another mod_perl server, which will be dedicated to file uploads only, and
have it serve those specific URIs through correct proxy configuration.

Apache’s mod_proxy Module | 433

é ,ch12.24057 Page 434 Thursday, November 18, 2004 12:41 PM

Closing Lingering Connections with lingerd

Because of some technical complications in TCP/IP, at the end of each client connec-
tion, it is not enough for Apache to close the socket and forget about it; instead, it
needs to spend about one second lingering (waiting) on the client.”

lingerd is a daemon (service) designed to take over the job of properly closing net-
work connections from an HTTP server such as Apache and immediately freeing it to
handle new connections.

lingerd can do an effective job only if HTTP KeepAlives are turned off. Since Keep-
Alives are useful for images, the recommended setup is to serve dynamic content
with mod_perl-enabled Apache and lingerd, and static content with plain Apache.

With a lingerd setup, we don’t have the proxy (we don’t want to use lingerd on our
httpd_docs server, which is also our proxy), so the buffering chain we presented ear-
lier for the proxy setup is much shorter here (see Figure 12-8).

Client
Apache Kernel
[mod_perl] [sendbuf] = TCP/IP

Figure 12-8. Shorter buffering chain

Hence, in this setup it becomes more important to have a big enough kernel send
buffer.

With lingerd, a big enough kernel send buffer, and KeepAlives off, the job of spoon-
feeding the data to a slow client is done by the OS kernel in the background. As a
result, lingerd makes it possible to serve the same load using considerably fewer
Apache processes. This translates into a reduced load on the server. It can be used as
an alternative to the proxy setups we have seen so far.

For more information about lingerd, see http://www.iagora.com/about/software/
lingerd).

Caching Feature

Apache does caching as well. It’s relevant to mod_perl only if you produce proper
headers, so your scripts’ output can be cached. See the Apache documentation for
more details on the configuration of this capability.

To enable caching, use the CacheRoot directive, specifying the directory where cache
files are to be saved:

CacheRoot /usr/local/apache/cache

* More details can be found at http://httpd.apache.org/docs/misc/fin_wait_2.html.

434 | Chapter12: ServerSetup Strategies

- ad

é ,ch12.24057 Page 435 Thursday, November 18, 2004 12:41 PM

*

Make sure that directory is writable by the user under which httpd is running.

The CacheSize directive sets the desired space usage in kilobytes:
CacheSize 50000 # 50 MB

Garbage collection, which enforces the cache size, is set in hours by the
CacheGcInterval. If unspecified, the cache size will grow until disk space runs out.
This setting tells mod_proxy to check that your cache doesn’t exceed the maximum
size every hour:

CacheGcInterval 1

CacheMaxExpire specifies the maximum number of hours for which cached docu-
ments will be retained without checking the origin server:

CacheMaxExpire 72

If the origin server for a document did not send an expiry date in the form of an
Expires header, then the CachelastModifiedFactor will be used to estimate one by
multiplying the factor by the time the document was last modified, as supplied in the
Last-Modified header.

CachelastModifiedFactor 0.1

If the content was modified 10 hours ago, mod_proxy will assume an expiration time
of 10x0.1 = 1 hour. You should set this according to how often your content is
updated.

If neither Last-Modified nor Expires is present, the CacheDefaultExpire directive
specifies the number of hours until the document is expired from the cache:

CacheDefaultExpire 24

Build Process

To build mod_proxy into Apache, just add --enable-module=proxy during the
Apache ./configure stage. Since you will probably need mod_rewrite’s capability as
well, enable it with --enable-module=rewrite.

mod_rewrite Examples

In the mod_proxy and mod_perl servers scenario, ProxyPass was used to redirect all
requests to the mod_perl server by matching the beginning of the relative URI (e.g.,
/perl). What should you do if you want everything, except files with .gif, .cgi, and
similar extensions, to be proxypassed to the mod_perl server? (These other files are
to be served by the light Apache server, which carries the mod_proxy module.)

The following example locally handles all requests for files with extensions .gif, .jpg,
.png, .css, .txt, and .cgi and relative URIs starting with /cgi-bin (e.g., if you want some
scripts to be executed under mod_cgi), and rewrites everything else to the mod_perl

mod_rewrite Examples | 435

%

ﬁ

*@%

é ,ch12.24057 Page 436 Thursday, November 18, 2004 12:41 PM

server. That is, first handle locally what you want to handle locally, then hand off
everything else to the backend guy. Notice that we assume that there are no static
HTML files. If you have any of those, adjust the rules to handle HTML files as well.

RewriteEngine On

handle static files and traditional CGIs directly

RewriteRule \.(gif|jpg|png|css|txt|cgi)$ - [last]

RewriteRule ~/cgi-bin - [last]

pass off everything but images to the heavy-weight server via proxy

RewriteRule ~/(.*)$ http://localhost:4077/$1 [proxy]

This is the configuration of the logging facilities:

Rewriteloglevel 1
Rewritelog "| /home/httpd/httpd docs/bin/rotatelogs \
/home/httpd/httpd _docs/logs/r log 86400"

It says to log all the rewrites through the Unix process pipe to the rotatelogs utility,
which will rotate the logs every 24 hours (86,400 seconds).

As another example, here’s how to redirect all those Internet Explorer 5 (IE5)
requests for favicon.ico to a central image:

RewriteRule .*favicon.ico /wherever/favicon.ico [passthrough]

The passthrough flag tells mod_rewrite to set the URI of the request to the value of
the rewritten filename /whatever/favicon.ico, so that any other rewriting directives,
such as Alias, still apply.

Here’s a quick way to make dynamic pages look static:
RewriteRule “/wherever/([a-zA-Z]+).html /perl/$1.pl [passthrough]

passthrough is used again so that the URI is properly rewritten and any ScriptAlias
or other directives applying to /perl will be carried out.

Instead of keeping all your Perl scripts in /perl and your static content everywhere
else, you could keep your static content in special directories and keep your Perl
scripts everywhere else. You can still use the light/heavy Apache separation approach
described earlier, with a few minor modifications.

In the light Apache’s httpd.conf file, turn rewriting on:
RewriteEngine On

Now list all directories that contain only static objects. For example, if the only
directories relative to DocumentRoot are /images and /style, you can set the following
rule:

RewriteRule */(images|style) - [last]

The [last] flag means that the rewrite engine should stop if it has a match. This is
necessary because the very last rewrite rule proxies everything to the heavy server:

RewriteRule */(.*) http://www.example.com:8080/$1 [proxy]

436 | Chapter12: ServerSetup Strategies

4~ ~4]e

é ,ch12.24057 Page 437 Thursday, November 18, 2004 12:41 PM

This line is the difference between a server for which static content is the default and
one for which dynamic (Perlish) content is the default.

You should also add the reverse rewrite rule, as before:
ProxyPassReverse / http://www.example.com/

so that the user doesn’t see the port number :8000 in the browser’s location window
in cases where the heavy server issues a redirect.

It is possible to use localhost in the RewriteRule above if the heavy and light servers
are on the same machine. So if we sum up the above setup, we get:
RewriteEngine On
RewriteRule */(images|style) - [last]
RewriteRule */(.*) http://www.example.com:8000/$1 [proxy]
ProxyPassReverse / http://www.example.com/
In the next example, we use mod_rewrite’s env flag to set an environment variable
only for proxied requests. This variable can later be used by other directives.
RewriteRule */(images|style) - [last]
RewriteRule ~/(.*) http://www.example.com:8000/$1 [env=dyn:1,proxy]
ProxyPassReverse / http://www.example.com/
We could use this environment variable to turn off logging for dynamic requests:

LogFormat "%h %1 %u %t \"%r\" %>s %b" common

CustomLog logs/access log common env=!dyn
This comes in handy when using an authentication module on the mod_perl server,
such as Apache: :AuthenDBI. Authenticated user credentials we’re interested in log-
ging are available only in the backend server. This technique is most useful when vir-
tual hosts are used: logging can be turned on in the mod_perl server for this specific
virtual host only.

Getting the Remote Server IP in the
Backend Server in the Proxy Setup

When using the proxy setup to boost performance, you might face the problem that
the remote IP always seems to be 127.0.0.1, which is your proxy’s IP. To solve that
issue, Ask Bjoern Hansen has written the mod_proxy_add_forward module,” which
can be aded to the frontend Apache server. It sets the X-Forwarded-For header when
doing a ProxyPass, similar to what Squid can do. This header contains the IP address
of the client connecting to the proxy, which you can then access in the mod_perl-
enabled server. You won’t need to compile anything into the backend server.

* See the References section at the end of this chapter for download information.

Getting the Remote Server IP in the Backend Server in the Proxy Setup | 437

4~ ~4]e

é ,ch12.24057 Page 438 Thursday, November 18, 2004 12:41 PM

To enable this module you have to recompile the frontend server with the following
options:
panic% ./configure \
--with-layout=Apache \
--activate-module=src/modules/extra/mod _proxy add forward.c \

--enable-module=proxy add_forward \
. other options ...

Adjust the location of mod_proxy_add_forward.c if needed.

In the backend server you can use the handler in Example 12-4 to automatically cor-
rect $r->connection->remote ip.

Example 12-4. Book/ProxyRemoteAddr.pm
package Book: :ProxyRemoteAddr;

use Apache::Constants qw(0K);
use strict;

sub handler {
my $r = shift;

we'll only look at the X-Forwarded-For header if the request

comes from our proxy at localhost

return OK unless ($r->connection->remote ip eq "127.0.0.1") 88&
$r->header_in('X-Forwarded-For');

Select last value in the chain -- original client's IP
if (my ($ip) = $r->headers in->{'X-Forwarded-For'} =~ /([*,\s]+)$/) {
$r->connection->remote ip($ip);

}

return OK;

}

1;

Next, enable this handler in the backend’s httpd.conf file:
PerlPostReadRequestHandler Book::ProxyRemoteAddr

and the right thing will happen transparently for your scripts: for Apache: :Registry
or Apache: :Per1Run scripts, you can access the remote IP through $ENV{REMOTE_ADDR},
and for other handlers you can use $r->connection->remote_ip.

Generally, you shouldn’t trust the X-Forwarded-For header. You should only rely on
the X-Forwarded-For header from proxies you control yourself—this is why the rec-
ommended handler we have just presented checks whether the request really came
from 127.0.0.1 before changing remote ip. If you know how to spoof a cookie,
you’ve probably got the general idea of making HTTP headers and can spoof the X-
Forwarded-For header as well. The only address you can count on as being a reliable
value is the one from $r->connection->remote ip.

438 | Chapter12: ServerSetup Strategies

4~ ~4]e

é ,ch12.24057 Page 439 Thursday, November 18, 2004 12:41 PM

*

Frontend/Backend Proxying with Virtual
Hosts

This section explains a configuration setup for proxying your backend mod_perl
servers when you need to use virtual hosts.

Virtual Host Flavors

Apache supports three flavors of virtual hosts:

IP-based virtual hosts

In this form, each virtual host uses its own IP address. Under Unix, multiple IP
addresses are assigned to the same network interface using the ifconfig utility.
These additional IP addresses are sometimes called virtual addresses or IP aliases.
IP-based virtual hosting is the oldest form of virtual hosting. Due to the sup-
posed increasing scarcity of IP addresses and ensuing difficulty in obtaining large
network blocks in some parts of the world, IP-based virtual hosting is now less
preferred than name-based virtual hosting.

Name-based virtual hosts
Name-based virtual hosts share a single IP address. Apache dispatches requests
to the appropriate virtual host by examining the Host: HTTP header field. This
field’s value is the hostname extracted from the requested URI. Although this
header is mandatory for HTTP 1.1 clients, it has also been widely used by HTTP
1.0 clients for many years.

Port-based virtual hosts
In this setup, all virtual hosts share the same IP address, but each uses its own
unique port number. As we’ll discuss in the next section, port-based virtual
hosts are mostly useful for backend servers not directly accessible from Internet
clients.

Mixed flavors
It is perfectly possible to mix the various virtual host flavors in one server.

Dual-Server Virtual Host Configuration

In the dual-server setup, which virtual host flavor is used on the frontend (reverse
proxy) server is irrelevant. When running a large number of virtual hosts, it is gener-
ally preferable to use name-based virtual hosts, since they share a single IP address.
HTTP clients have been supporting this since 1995.

SSL-enabled sites cannot use this scheme, however. This is because when using SSL,
all HTTP traffic is encrypted, and this includes the request’s Host: header. This
header is unavailable until the SSL handshake has been performed, and that in turn
requires that the request has been dispatched to the appropriate virtual host, because

Frontend/Backend Proxying with Virtual Hosts | 439

%

ﬁ

*@%

é ,ch12.24057 Page 440 Thursday, November 18, 2004 12:41 PM

the SSL handshake depends on that particular host’s SSL certificate. For this reason,
each SSL-enabled virtual host needs its own, unique IP address. You can still use
name-based virtual hosts along with SSL-enabled virtual hosts in the same configura-
tion file, though.

For the backend mod_perl-enabled server, we recommend using port-based virtual
hosts using the TP address 127.0.0.1 (localhost). This enforces the fact that this server
is accessible only from the frontend server and not directly by clients.

Virtual Hosts and Main Server Interaction

When using virtual hosts, any configuration directive outside of a <VirtualHost> con-
tainer is applied to a virtual host called the main server, which plays a special role.
First, it acts as the default host when you’re using name-based virtual hosts and a
request can’t be mapped to any of the configured virtual hosts (for example, if no
Host: header is provided). Secondly, many directives specified for the main server are
merged with directives provided in <VirtualHost> containers. In other words, virtual
hosts inherit properties from the main server. This allows us to specify default behav-
iors that will apply to all virtual hosts, while still allowing us to override these behav-
iors for specific virtual hosts.

In the following example, we use the PerlSetupEnv directive to turn off environment
population for all virtual hosts, except for the www.example.com virtual host, which
needs it for its legacy CGI scripts running under Apache: :Registry:

PerlSetupEnv Off

Listen 8001

<VirtualHost 127.0.0.1:8001>
ServerName www.example.com
PerlSetupEnv On

</VirtualHost>

Frontend Server Configuration

The following example illustrates the use of name-based virtual hosts. We define two
virtual hosts, www.example.com and www.example.org, which will reverse-proxy
dynamic requests to ports 8001 and 8002 on the backend mod_perl-enabled server.

Listen 192.168.1.2:80
NameVirtualHost 192.168.1.2:80

Replace 192.168.1.2 with your server’s public IP address.
LogFormat "%v %h %1 %u %t \"%r\" %s %b \"%{Referer}i\" \"%{User-agent}i\""

The log format used is the Common Log Format prefixed with %v, a token represent-
ing the name of the virtual host. Using a combined log common to all virtual hosts
uses fewer system resources. The log file can later be split into seperate files accord-
ing to the prefix, using splitlog or an equivalent program.

440 | Chapter12: ServerSetup Strategies

- ad

é ,ch12.24057 Page 441 Thursday, November 18, 2004 12:41 PM

The following are global options for mod_rewrite shared by all virtual hosts:

Rewriteloglevel 0

RewriteRule \.(gif|jpg|png|txt|html)$ - [last]
This turns off the mod_rewrite module’s logging feature and makes sure that the
frontend server will handle files with the extensions .gif, .jpg, .png, .txt, and .html
internally.

If your server is configured to run traditional CGI scripts (under mod_cgi) as well as
mod_perl CGI programs, it would be beneficial to configure the frontend server to run
the traditional CGI scripts directly. This can be done by altering the
(gif|jpg|png|txt|html) rewrite rule to add cgi if all your mod_cgi scripts have the .cgi
extension, or by adding a new rule to handle all /cgi-bin/*locations internally.

The virtual hosts setup is straightforward:

#HiHHH# www . example. com
<VirtualHost 192.168.1.2:80>
ServerName www . example.com
ServerAdmin webmaster@example.com
DocumentRoot /home/httpd_docs/htdocs/www.example.com

RewriteEngine on
RewriteOptions 'inherit’
RewriteRule ~/(perl/.*)$ http://127.0.0.1:8001/$1 [P,L]
ProxyPassReverse / http://www.example.com/
</VirtualHost>

#HitHHH# waw . example.org
<VirtualHost 192.168.1.2:80>
ServerName www . example.org
ServerAdmin webmaster@example.org
DocumentRoot /home/httpd_docs/htdocs/www.example.org

RewriteEngine on
RewriteOptions 'inherit’
RewriteRule ~/(perl/.*)$ http://127.0.0.1:8002/%1 [P,L]
ProxyPassReverse / http://www.example.org/
</VirtualHost>

The two virtual hosts’ setups differ in the DocumentRoot and ProxyPassReverse set-
tings and in the backend ports to which they rewrite.

Backend Server Configuration

This section describes the configuration of the backend server.

The backend server listens on the loopback (localhost) interface:
BindAddress 127.0.0.1

In this context, the following directive does not specify a listening port:

Port 80

Frontend/Backend Proxying with Virtual Hosts | 441

4~ ~4]e

é ,ch12.24057 Page 442 Thursday, November 18, 2004 12:41 PM

Rather, it indicates which port the server should advertise when issuing a redirect.
The following global mod_perl settings are shared by all virtual hosts:
#HHHH mod_perl settings

PerlRequire /home/httpd/perl/startup.pl
PerlFixupHandler Apache::Sizelimit
PerlPostReadRequestHandler Book: :ProxyRemoteAddr
PerlSetupEnv off

As explained earlier, we use the Book: : ProxyRemoteAddr handler to get the real remote
IP addresses from the proxy.

We can then proceed to configure the virtual hosts themselves:

HHHH www . example. com
Listen 8001
<VirtualHost 127.0.0.1:8001>

The Listen directive specifies the port to listen on. A connection to that port will be
matched by this <VirtualHost> container.

The remaining configuration is straightforward:

ServerName www.example.com
ServerAdmin webmaster@example.com

<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry
Options +ExecCGI

</Location>

<Location /perl-status>
SetHandler perl-script
PerlHandler Apache::Status
</Location>

</VirtualHost>
We configure the second virtual host in a similar way:

#itHH## waw . example.org

Listen 8002

<VirtualHost 127.0.0.1:8002>
ServerName www.example.org
ServerAdmin webmaster@example.org

<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry
Options +ExecCGI

</Location>

</VirtualHost>

You may need to specify the DocumentRoot setting in each virtual host if there is any
need for it.

442 | Chapter12: ServerSetup Strategies

4~ ~4]e

é ,ch12.24057 Page 443 Thursday, November 18, 2004 12:41 PM

*

HTTP Authentication with Two Servers and a
Proxy

In a setup with one frontend server that proxies to a backend mod_perl server,
authentication should be performed entirely on one of the servers: don’t mix and
match frontend- and backend-based authentication for the same URI.

File-based basic authentication (performed by mod_auth) is best done on the fron-
tend server. Only authentication implemented by mod_perl handlers, such as
Apache: :AuthenDBI, should be performed on the backend server. mod_proxy will
proxy all authentication headers back and forth, making the frontend Apache server
unaware of the authentication process.

When One Machine Is Not Enough for Your
RDBMS DataBase and mod_ perl

Imagine a scenario where you start your business as a small service providing a web
site. After a while your business becomes very popular, and at some point you real-
ize that it has outgrown the capacity of your machine. Therefore, you decide to
upgrade your current machine with lots of memory, a cutting-edge, super-expensive
CPU, and an ultra-fast hard disk. As a result, the load goes back to normal—but not
for long. Demand for your services keeps on growing, and just a short time after
you’ve upgraded your machine, once again it cannot cope with the load. Should you
buy an even more powerful and very expensive machine, or start looking for another
solution? Let’s explore the possible solutions for this problem.

A typical web service consists of two main software components: the database server
and the web server.

A typical user-server interaction consists of accepting the query parameters entered
into an HTML form and submitted to the web server by a user, converting these
parameters into a database query, sending it to the database server, accepting the
results of the executed query, formatting them into a nice HTML page, and sending
it to a user’s Internet browser or another application that created the request (e.g., a
mobile phone with WAP browsing capabilities). This process is depicted in
Figure 12-9.

This schema is known as a three-tier architecture in the computing world. In a three-
tier architecture, you split up several processes of your computing solution between
different machines:

Tier 1
The client, who will see the data on its screen and can give instructions to mod-
ify or process the data. In our case, an Internet browser.

When One Machine Is Not Enough for Your RDBMS DataBase and mod_perl | 443

%

ﬁ

*@%

é ,ch12.24057 Page 444 Thursday, November 18, 2004 12:41 PM

*

Ny
/ .

Client Apache server Database server

Figure 12-9. Typical user-server interaction

Tier 2
The application server, which does the actual processing of the data and sends it
back to the client. In our case, a mod_perl-enabled Apache server.

Tier 3

The database server, which stores and retrieves all the data for the application
server.

We are interested only in the second and the third tiers; we don’t specify user
machine requirements, since mod_perl is all about server-side programming. The
only thing the client should be able to do is to render the generated HTML from the
response, which any simple browser will do.

Server Requirements

Let’s first look at what kind of software the web and database servers are, what they
need to run fast, and what implications they have on the rest of the system software.

The three important machine components are the hard disk, the amount of RAM,
and the CPU type. Typically, the mod_perl server is mostly RAM-hungry, while the
SQL database server mostly needs a very fast hard disk. Of course, if your mod_perl
process reads a lot from the disk (a quite infrequent phenomenon) you will need a
fast disk too. And if your database server has to do a lot of sorting of big tables and
do lots of big table joins, it will need a lot of RAM too.

If we specified average virtual requirements for each machine, that’s what we’d get.
An “ideal” mod_perl machine would have:
HD

Low-end (no real I/O, mostly logging)

RAM
The more, the better

CPU
Medium to high (according to needs)

444 | Chapter12: ServerSetup Strategies

*@%

4~ 4

é ,ch12.24057 Page 445 Thursday, November 18, 2004 12:41 PM

*

An “ideal” database server machine would have:

HD
High-end
RAM
Large amounts (for big joins, sorting of many records), small amounts otherwise

CPU
Medium to high (according to needs)

The Problem

With the database and the web server on the same machine, you have conflicting
interests.

During peak loads, Apache will spawn more processes and use RAM that the data-
base server might have been using, or that the kernel was using on its behalf in the
form of a cache. You will starve your database of resources at the time when it needs
those resources the most.

Disk I/O contention produces the biggest time issue. Adding another disk won’t cut
I/O times, because the database is the only thing that does I/O—mod_perl pro-
cesses have all their code loaded in memory (we are talking about code that does
pure Perl and SQL processing). Thus, it’s clear that the database is I/O- and CPU-
bound (it’'s RAM-bound only if there are big joins to make), while mod_perl is
mostly CPU- and memory-bound.

There is a problem, but it doesn’t mean that you cannot run the application and the
web servers on the same machine. There is a very high degree of parallelism in mod-
ern PC architecture. The I/O hardware is helpful here. The machine can do many
things while a SCSI subsystem is processing a command or the network hardware is
writing a buffer over the wire.

If a process is not runnable (that is, it is blocked waiting for I/O or something else), it
is not using significant CPU time. The only CPU time that will be required to main-
tain a blocked process is the time it takes for the operating system’s scheduler to look
at the process, decide that it is still not runnable, and move on to the next process in
the list. This is hardly any time at all. If there are two processes, one of which is
blocked on I/O and the other of which is CPU-bound, the blocked process is getting
0% CPU time, the runnable process is getting 99.9% CPU time, and the kernel
scheduler is using the rest.

The Solution

The solution is to add another machine, which allows a setup where both the data-
base and the web server run on their own dedicated machines.

When One Machine Is Not Enough for Your RDBMS DataBase and mod_perl | 445

%

ﬁ

*@%

é ,ch12.24057 Page 446 Thursday, November 18, 2004 12:41 PM

This solution has the following advantages:

Flexible hardware requirements

It allows you to scale two requirements independently.

If your httpd processes are heavily weighted with respect to RAM consumption,
you can easily add another machine to accommodate more httpd processes,
without changing your database machine.

If your database is CPU-intensive but your httpd doesn’t need much CPU time,
you can get a low-end machine for the httpd and a high-end machine with a very
fast CPU for the database server.

Scalability

Since your web server doesn’t depend on the database server location any more,
you can add more web servers hitting the same database server, using the exist-
ing infrastructure.

Database security

Once you have multiple web server boxes, the backend database becomes a sin-
gle point of failure, so it’s a good idea to shield it from direct Internet access—
something that is harder to do when the web and database servers reside on the
same machine.

It also has the following disadvantages:

Network latency

A database request from a web server to a database server running on the same
machine uses Unix sockets, not the TCP/IP sockets used when the client sub-
mits the query from another machine. Unix sockets are very fast, since all the
communications happen within the same box, eliminating network delays. TCP/
IP socket communication totally depends on the quality and the speed of the
network that connects the two machines.

Basically, you can have almost the same client-server speed if you install a very
fast and dedicated network between the two machines. It might impose a cost of
additional NICs, but that cost is probably insignificant compared to the speed
improvement you gain.

Even the normal network that you have would probably fit as well, because the
network delays are probably much smaller than the time it takes to execute the
query. In contrast to the previous paragraph, you really want to test the added
overhead here, since the network can be quite slow, especially at peak hours.

How do you know what overhead is a significant one? All you have to measure is
the average time spent in the web server and the database server. If either of the
two numbers is at least 20 times bigger than the added overhead of the network,
you are all set.

To give you some numbers, if your query takes about 20 milliseconds to process
and only 1 millisecond to deliver the results, it’s good. If the delivery takes about

446

| Chapter12: ServerSetup Strategies

%

é ,ch12.24057 Page 447 Thursday, November 18, 2004 12:41 PM

half of the time the processing takes, you should start considering switching to a
faster and/or dedicated network.

The consequences of a slow network can be quite bad. If the network is slow,
mod_perl processes remain open, waiting for data from the database server, and
eat even more RAM as new child processes pop up to handle new requests. So
the overall machine performance can be worse than it was originally, when you
had just a single machine for both servers.

Three Machine Model

Since we are talking about using a dedicated machine for each server, you might con-
sider adding a third machine to do the proxy work; this will make your setup even
more flexible, as it will enable you to proxypass all requests not just to one mod_
perl-running box, but to many of them. This will enable you to do load balancing if
and when you need it.

Generally, the proxy machine can be very light when it serves just a little traffic and
mainly proxypasses to the mod_perl processes. Of course, you can use this machine
to serve the static content; the hardware requirement will then depend on the num-
ber of objects you have to serve and the rate at which they are requested.

Figure 12-10 illustrates the three machine model.

2 equest ‘ "
!~’ h H
L NU
-
Ly
/@

£
Mg / - :
@/! ! mm%e ‘ J/ ‘

@/@’ Request J//‘
~ . Response T g
@/@ ’ y docs

.

V4 Request 4
-~ q <
& /@,/ Response =
&7 . /
E2ponse Database
Clients perl server

Figure 12-10. A proxy machine, machine(s) with mod_perl-enabled Apache, and the database
server machine

When One Machine Is Not Enough for Your RDBMS DataBase and mod_perl | 447

- ad

é ,ch12.24057 Page 448 Thursday, November 18, 2004 12:41 PM

Running More than One mod_perl Server
on the Same Machine

Let’s assume that you have two different sets of code that have little or nothing in
common—different Per] modules, no code sharing. Typical numbers can be 4 MB of
unshared’ and 4 MB of shared memory for each code set, plus 3 MB of shared basic
mod_perl stuff—which makes each process 17 MB in size when the two code sets are
loaded. Let’s also assume that we have 251 MB of RAM dedicated to the web server
(Total RAM):

Shared_RAM per Child : 11MB

Max_Process Size : 17MB
Total RAM : 251MB

According to the equation developed in Chapter 11:

Total_RAM — Shared_RAM_per_Child

MaxClients =
Max_Process_Size — Shared_RAM_per_Child
. 251-11
MaxClients = AT 40

We see that we can run 40 processes, using the given memory and the two code sets
in the same server.

Now consider this practical decision. Since we have recognized that the code sets are
very distinct in nature and there is no significant memory sharing in place, the wise
thing to do is to split the two code sets between two mod_perl servers (a single mod_
perl server actually is a set of the parent process and a number of the child pro-
cesses). So instead of running everything on one server, now we move the second
code set onto another mod_perl server. At this point we are talking about a single
machine.

Let’s look at the figures again. After the split we will have 20 11-MB processes (4 MB
unshared + 7 MB shared) running on one server and another 20 such processes run-
ning on the other server.

How much memory do we need now? From the above equation we derive:

Total_ RAM = MaxClients x (Max_Process_Size — Shared_RAM_per_Child)
+ Shared_RAM_per_Child

Using our numbers, this works out to a total of 174 MB of memory required:

Total_LRAM = 2x (20x (11-7)+7) = 174

* 4 MB of unshared memory is a pretty typical size, especially when connecting to databases, as the database
connections cannot be shared. Databases like Oracle can take even more RAM per connection on top of this.

448 | Chapter12: ServerSetup Strategies

4~ ~4]e

é ,ch12.24057 Page 449 Thursday, November 18, 2004 12:41 PM

But hey, we have 251 MB of memory! That leaves us with 77 MB of free memory. If
we recalculate MaxClients, we will see that we can run almost 60 more servers:

MaxClients = (251 -7%x2)/(11-7) = 59

So we can run about 19 more servers using the same memory size—that’s almost 30
servers for each code set instead of 20. We have enlarged the server pool by half
without changing the machine’s hardware.

Moreover, this new setup allows us to fine-tune the two code sets—in reality the
smaller code base might have a higher hit rate—so we can benefit even more.

Let’s assume that, based on usage statistics, we know that the first code set is called
in 70% of requests and the other is called in the remaining 30%. Now we assume
that the first code set requires only 5 MB of RAM (3 MB shared + 2 MB unshared)
over the basic mod_perl server size, and the second set needs 11 MB (7 MB shared +
4 MB unshared).

Let’s compare this new requirement with our original 50:50 setup (here we have
assigned the same number of clients for each code set).

So now the first mod_perl server running the first code set will have all its processes
using 8 MB (3 MB server shared + 3 MB code shared + 2 MB code unshared), and the
second server’s process will each be using 14 MB of RAM (3 MB server shared + 7MB
code shared + 4 MB code unshared). Given that we have a 70:30 hit relation and that
we have 251 MB of available memory, we have to solve this set of equations:

X/Y =7/3
AX(8—6)+6+Yx(14—-10)+10 = 251

where X is the total number of processes the first code set can use and Y the second.
The first equation reflects the 70:30 hit relation, and the second uses the equation for
the total memory requirements for the given number of servers and the shared and
unshared memory sizes.

When we solve these equations, we find that X = 63 and Y = 27. So we have a total
of 90 servers—two and a half times more than in the original setup using the same
memory size.

The hit-rate optimized solution and the fact that the code sets can be different in
their memory requirements allowed us to run 30 more servers in total and gave us 33
more servers (63 versus 30) for the most-wanted code base, relative to the simple 50:
50 split used in the first example.

Of course, if you identify more than two distinct sets of code based on your hit rate
statistics, more complicated solutions may be required. You could even make more
splits and run three or more mod_perl servers.

Running More than One mod_perl Server on the Same Machine | 449

4~ ~4]e

é ,ch12.24057 Page 450 Thursday, November 18, 2004 12:41 PM

*

However, you shouldn’t get carried away. Remember that having too many running
processes doesn’t necessarily mean better performance, because all of them will con-
tend for CPU time slices. The more processes that are running, the less CPU time
each gets and the slower overall performance will be. Therefore, after hitting a cer-
tain load you might want to start spreading your servers over different machines.

When you have different components running on different servers, in addition to the
obvious memory saving, you gain the power to more easily troubleshoot problems
that occur. It’s quite possible that a small change in the server configuration to fix or
improve something for one code set might completely break the second code set. For
example, if you upgrade the first code set and it requires an update of some modules
that both code bases rely on, there is a chance that the second code set won’t work
with the new versions of those modules.

SSL Functionality and a mod_ perl Server

If you need SSL functionality, you can get it by adding the mod_ssl or equivalent
Apache-SSL to the light frontend server (httpd_docs) or the heavy backend mod_perl
server (httpd_perl). The configuration and installation instructions are given in
Chapter 3.

The question is, is it a good idea to add mod_ssl to the backend mod_perl-enabled
server? If your internal network is secured, or if both the frontend and backend serv-
ers are running on the same machine and you can ensure a safe communication
between the processes, there is no need for encrypted traffic between them.

If this is the situation, you don’t have to put mod_ssl into the already heavy mod_
perl server. You will have the external traffic encrypted by the frontend server, which
will proxypass the unencrypted request and response data internally. This is depicted
in Figure 12-11.

Another important point is that if you put mod_ssl on the backend server, you have
to tunnel back your images to it (i.e., have the backend serve the images), defeating
the whole purpose of having the lightweight frontend server.

You cannot serve a secure page that includes nonsecure information. If you fetch
over SSL an HTML page containing an tag that fetches an image from the non-
secure server, the image is shown broken. This is true for any other nonsecure
objects as well. Of course, if the generated response doesn’t include any embedded
objects (e.g., images) this isn’t a problem.

Giving the SSL functionality to the frontend machine also simplifies configuration of
mod_perl by eliminating VirtualHost duplication for SSL. mod_perl configuration
files can be plenty difficult without the mod_ssl overhead.

Also, assuming that your frontend machine is underworked anyway, especially if you
run a high-volume web service deploying a cluster of machines to serve requests, you

450 | Chapter12: ServerSetup Strategies

%

ﬁ

*@%

% é ,ch12.24057 Page 451 Thursday, November 18, 2004 12:41 PM

L N s LY LN AN

-~ A AT AT -~ A A A

) o 2, l |) 1 A B B

@,\g’g| R R R @g & R

®’~~ - ~~ o
My e < it
~’\~/,\ 4 example.tam:a F@/ example.cnmzﬂ
iy g £ * Niga—
<y 1 1 SNy i d

®’~\/ &7/

<My REREX £y A3 4
httpd_perl

httpd_perl Apache + mod_perl
Clients Apﬂfc':f;ﬁ;"t;%%%"l Clients IotaIITassgBoBo

Figure 12-11. mod_proxy enabled-Apache with SSL and mod_perl-enabled Apache

will save some CPU, as it’s known that SSL connections are about 100 times more
CPU-intensive than non-SSL connections.

Of course, caching session keys so you don’t have to set up a new symmetric key for
every single connection improves the situation. If you use the shared-memory ses-
sion-caching mechanism that mod_ssl supports, the overhead is actually rather
small, except for the initial connection.

But then, on the other hand, why even bother to run a full-scale mod_ssl-enabled
server in front? You might as well just choose a small tunnel/port-forwarding appli-
cation such as Stunnel or one of the many others mentioned at http:/www.openssl.
org/related/apps.html.

Of course, if you do heavy SSL processing, ideally you should really be offloading it
to a dedicated cryptography server. But this advice can be misleading, based on the
current status of crypto hardware. If you use hardware, you get extra speed now, but
you’re locked into a proprietary solution; in six months or a year software will have
caught up with whatever hardware you’re using, and because software is easier to
adapt, you’ll have more freedom to change whatever software you’re using and more
control of things. So the choice is in your hands.

Uploading and Downloading Big Files

You don’t want to tie up your precious mod_perl backend server children doing
something as long and simple as transferring a file, especially a big one. The over-
head saved by mod_perl is typically under one second, which is an enormous sav-
ings for scripts whose runtimes are under one second. However, the user won’t really

Uploading and Downloading Big Files | 451

- | ®

é ,ch12.24057 Page 452 Thursday, November 18, 2004 12:41 PM

*

see any important performance benefits from mod_perl, since the upload may take
up to several minutes.

If some particular script’s main functionality is the uploading or downloading of big
files, you probably want it to be executed on a plain Apache server under mod_cgi (i.e.,
performing this operation on the frontend server, if you use a dual-server setup as pre-
sented earlier).

This of course assumes that the script requires none of the functionality of the mod_
perl server, such as custom authentication handlers.

References

Chapter 9 (“Tuning Apache and mod_perl”) in mod_perl Developer’s Cookbook,
by Geoffrey Young, Paul Lindner, and Randy Kobes (Sams Publishing).

mod_backhand, which provides load balancing for Apache: hitp://www.
backhand.org/mod_backhand/.

The High-Availability Linux Project, the definitive guide to load-balancing tech-
niques: http://www.linux-ha.org/.

lbnamed, a load-balancing name server written in Perl: http://www.stanford.edu/
~riepel/lbnamed/, http://www.stanford.edu/~riepel/lbnamed/bof.talk/, or http://
www.stanford.edu/~schemers/docs/lbnamed/lbnamed. html.

The Linux Virtual Server Project: http://www.linuxvirtualserver.org/.
The latest IPFilter: http://coombs.anu.edu.au/~avalon/.

This filter includes some simple load-balancing code that allows a round-robin
distribution onto several machines via ipnat. This may be a simple solution for a
few specific load problems.

The lingerd server and all the documentation are available from http://www.
iagora.com/about/software/lingerd).

The mod_proxy_add_forward Apache module, complete with instructions on
how to compile it, is available from one of these URLs: http://modules.apache.org/
search?id=124 or http://develooper.com/code/mpaf/imod_proxy_add_forward.c .

Apache: :Proxy::Info, a friendly mod_perl counterpart to mod_proxy_add_
forward.

Solaris 2.x—Tuning Your TCP/IP Stack and More: http://www.sean.de/Solaris/
soltune.html.

This page talks about the TCP/IP stack and various tricks of tuning your system
to get the most out of it as a web server. While the information is for the Solaris
2.x OS, most of it will be relevant of other Unix flavors. At the end of the page,
an extensive list of related literature is presented.

splitlog, part of the wwwstat distribution, is available at http://www.ics.uci.edu/
pub/websoft/wwwstat/.

452

| Chapter12: ServerSetup Strategies

%

ﬁ

*@%

