
This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

323

Chapter 9 CHAPTER 9

Essential Tools for Performance
Tuning

To be able to improve the performance of your system you need a prior understand-
ing of what can be improved, how it can be improved, how much it can be
improved, and, most importantly, what impact the improvement will have on the
overall performance of your system. You need to be able to identify those things that,
after you have done your best to improve them, will yield substantial benefits for the
overall system performance. Concentrate your efforts on them, and avoid wasting
time on improvements that give little overall gain.

If you have a small application it may be possible to detect places that could be
improved simply by inspecting the code. On the other hand, if you have a large
application, or many applications, it’s usually impossible to do the detective work
with the naked eye. You need observation instruments and measurement tools.
These belong to the benchmarking and code-profiling categories.

It’s important to understand that in the majority of the benchmarking tests that we
will execute, we will not be looking at absolute results. Few machines will have
exactly the same hardware and software setup, so this kind of comparison would
usually be misleading, and in most cases we will be trying to show which coding
approach is preferable, so the hardware is almost irrelevant.

Rather than looking at absolute results, we will be looking at the differences between
two or more result sets run on the same machine. This is what you should do; you
shouldn’t try to compare the absolute results collected here with the results of those
same benchmarks on your own machines.

In this chapter we will present a few existing tools that are widely used; we will apply
them to example code snippets to show you how performance can be measured,
monitored, and improved; and we will give you an idea of how you can develop your
own tools.

,ch09.23629 Page 323 Thursday, November 18, 2004 12:39 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

324 | Chapter 9: Essential Tools for Performance Tuning

Server Benchmarking
As web service developers, the most important thing we should strive for is to offer the
user a fast, trouble-free browsing experience. Measuring the response rates of our serv-
ers under a variety of load conditions and benchmark programs helps us to do this.

A benchmark program may consume significant resources, so you cannot find the
real times that a typical user will wait for a response from your service by running the
benchmark on the server itself. Ideally you should run it from a different machine. A
benchmark program is unlike a typical user in the way it generates requests. It should
be able to emulate multiple concurrent users connecting to the server by generating
many concurrent requests. We want to be able to tell the benchmark program what
load we want to emulate—for example, by specifying the number or rate of requests
to be made, the number of concurrent users to emulate, lists of URLs to request, and
other relevant arguments.

ApacheBench
ApacheBench (ab) is a tool for benchmarking your Apache HTTP server. It is
designed to give you an idea of the performance that your current Apache installa-
tion can give. In particular, it shows you how many requests per second your Apache
server is capable of serving. The ab tool comes bundled with the Apache source dis-
tribution, and like the Apache web server itself, it’s free.

Let’s try it. First we create a test script, as shown in Example 9-1.

We will simulate 10 users concurrently requesting the file simple_test.pl through http://
localhost/perl/simple_test.pl. Each simulated user makes 500 requests. We generate
5,000 requests in total:

panic% ./ab -n 5000 -c 10 http://localhost/perl/simple_test.pl

Server Software: Apache/1.3.25-dev
Server Hostname: localhost
Server Port: 8000

Document Path: /perl/simple_test.pl
Document Length: 6 bytes

Concurrency Level: 10
Time taken for tests: 5.843 seconds
Complete requests: 5000
Failed requests: 0

Example 9-1. simple_test.pl

my $r = shift;
$r->send_http_header('text/plain');
print "Hello\n";

,ch09.23629 Page 324 Thursday, November 18, 2004 12:39 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Server Benchmarking | 325

Broken pipe errors: 0
Total transferred: 810162 bytes
HTML transferred: 30006 bytes
Requests per second: 855.72 [#/sec] (mean)
Time per request: 11.69 [ms] (mean)
Time per request: 1.17 [ms] (mean, across all concurrent requests)
Transfer rate: 138.66 [Kbytes/sec] received

Connnection Times (ms)
 min mean[+/-sd] median max
Connect: 0 1 1.4 0 17
Processing: 1 10 12.9 7 208
Waiting: 0 9 13.0 7 208
Total: 1 11 13.1 8 208

Most of the report is not very interesting to us. What we really care about are the
Requests per second and Connection Times results:

Requests per second
The number of requests (to our test script) the server was able to serve in one
second

Connect and Waiting times
The amount of time it took to establish the connection and get the first bits of a
response

Processing time
The server response time—i.e., the time it took for the server to process the
request and send a reply

Total time
The sum of the Connect and Processing times

As you can see, the server was able to respond on average to 856 requests per sec-
ond. On average, it took no time to establish a connection to the server both the cli-
ent and the server are running on the same machine and 10 milliseconds to process
each request. As the code becomes more complicated you will see that the process-
ing time grows while the connection time remains constant. The latter isn’t influ-
enced by the code complexity, so when you are working on your code performance,
you care only about the processing time. When you are benchmarking the overall
service, you are interested in both.

Just for fun, let’s benchmark a similar script, shown in Example 9-2, under mod_cgi.

Example 9-2. simple_test_mod_cgi.pl

#!/usr/bin/perl
print "Content-type: text/plain\n\n";
print "Hello\n";

,ch09.23629 Page 325 Thursday, November 18, 2004 12:39 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

326 | Chapter 9: Essential Tools for Performance Tuning

The script is configured as:

ScriptAlias /cgi-bin/ /usr/local/apache/cgi-bin/

panic% /usr/local/apache/bin/ab -n 5000 -c 10 \
http://localhost/cgi-bin/simple_test_mod_cgi.pl

We will show only the results that interest us:

Requests per second: 156.40 [#/sec] (mean)
Time per request: 63.94 [ms] (mean)

Now, when essentially the same script is executed under mod_cgi instead of mod_
perl, we get 156 requests per second responded to, not 856.

ApacheBench can generate KeepAlives, GET (default) and POST requests, use Basic
Authentication, send cookies and custom HTTP headers. The version of Apache-
Bench released with Apache version 1.3.20 adds SSL support, generates gnuplot and
CSV output for postprocessing, and reports median and standard deviation values.

HTTPD::Bench::ApacheBench, available from CPAN, provides a Perl interface for ab.

httperf
httperf is another tool for measuring web server performance. Its input and reports
are different from the ones we saw while using ApacheBench. This tool’s manpage
includes an in-depth explanation of all the options it accepts and the results it gener-
ates. Here we will concentrate on the input and on the part of the output that is most
interesting to us.

With httperf you cannot specify the concurrency level; instead, you have to specify
the connection opening rate (--rate) and the number of calls (--num-call) to perform
on each opened connection. To compare the results we received from ApacheBench
we will use a connection rate slightly higher than the number of requests responded
to per second reported by ApacheBench. That number was 856, so we will try a rate
of 860 (--rate 860) with just one request per connection (--num-call 1). As in the pre-
vious test, we are going to make 5,000 requests (--num-conn 5000). We have set a
timeout of 60 seconds and allowed httperf to use as many ports as it needs (--hog).

So let’s execute the benchmark and analyze the results:

panic% httperf --server localhost --port 80 --uri /perl/simple_test.pl \
--hog --rate 860 --num-conn 5000 --num-call 1 --timeout 60

Maximum connect burst length: 11

Total: connections 5000 requests 5000 replies 5000 test-duration 5.854 s

Connection rate: 854.1 conn/s (1.2 ms/conn, <=50 concurrent connections)
Connection time [ms]: min 0.8 avg 23.5 max 226.9 median 20.5 stddev 13.7
Connection time [ms]: connect 4.0
Connection length [replies/conn]: 1.000

,ch09.23629 Page 326 Thursday, November 18, 2004 12:39 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Server Benchmarking | 327

Request rate: 854.1 req/s (1.2 ms/req)
Request size [B]: 79.0

Reply rate [replies/s]: min 855.6 avg 855.6 max 855.6 stddev 0.0 (1 samples)
Reply time [ms]: response 19.5 transfer 0.0
Reply size [B]: header 184.0 content 6.0 footer 2.0 (total 192.0)
Reply status: 1xx=0 2xx=5000 3xx=0 4xx=0 5xx=0

CPU time [s]: user 0.33 system 1.53 (user 5.6% system 26.1% total 31.8%)
Net I/O: 224.4 KB/s (1.8*10^6 bps)

Errors: total 0 client-timo 0 socket-timo 0 connrefused 0 connreset 0
Errors: fd-unavail 0 addrunavail 0 ftab-full 0 other 0

As before, we are mostly interested in the average Reply rate—855, almost exactly the
same result reported by ab in the previous section. Notice that when we tried --rate
900 for this particular setup, the reported request rate went down drastically, since
the server’s performance gets worse when there are more requests than it can handle.

http_load
http_load is yet another utility that does web server load testing. It can simulate a 33.6
Kbps modem connection (-throttle) and allows you to provide a file with a list of URLs
that will be fetched randomly. You can specify how many parallel connections to run
(-parallel N) and the number of requests to generate per second (-rate N). Finally, you
can tell the utility when to stop by specifying either the test time length (-seconds N) or
the total number of fetches (-fetches N).

Again, we will try to verify the results reported by ab (claiming that the script under
test can handle about 855 requests per second on our machine). Therefore we run
http_load with a rate of 860 requests per second, for 5 seconds in total. We invoke is
on the file urls, containing a single URL:

http://localhost/perl/simple_test.pl

Here is the generated output:

panic% http_load -rate 860 -seconds 5 urls
4278 fetches, 325 max parallel, 25668 bytes, in 5.00351 seconds
6 mean bytes/connection
855 fetches/sec, 5130 bytes/sec
msecs/connect: 20.0881 mean, 3006.54 max, 0.099 min
msecs/first-response: 51.3568 mean, 342.488 max, 1.423 min
HTTP response codes:
 code 200 -- 4278

This application also reports almost exactly the same response-rate capability: 855
requests per second. Of course, you may think that it’s because we have specified a
rate close to this number. But no, if we try the same test with a higher rate:

panic% http_load -rate 870 -seconds 5 urls
4045 fetches, 254 max parallel, 24270 bytes, in 5.00735 seconds

,ch09.23629 Page 327 Thursday, November 18, 2004 12:39 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

328 | Chapter 9: Essential Tools for Performance Tuning

6 mean bytes/connection
807.813 fetches/sec, 4846.88 bytes/sec
msecs/connect: 78.4026 mean, 3005.08 max, 0.102 min

we can see that the performance goes down—it reports a response rate of only 808
requests per second.

The nice thing about this utility is that you can list a few URLs to test. The URLs
that get fetched are chosen randomly from the specified file.

Note that when you provide a file with a list of URLs, you must make sure that you
don’t have empty lines in it. If you do, the utility will fail and complain:

./http_load: unknown protocol -

Other Web Server Benchmark Utilities
The following are also interesting benchmarking applications implemented in Perl:

HTTP::WebTest
The HTTP::WebTest module (available from CPAN) runs tests on remote URLs or
local web files containing Perl, JSP, HTML, JavaScript, etc. and generates a
detailed test report.

HTTP::Monkeywrench
HTTP::Monkeywrench is a test-harness application to test the integrity of a user’s
path through a web site.

Apache::Recorder and HTTP::RecordedSession
Apache::Recorder (available from CPAN) is a mod_perl handler that records an
HTTP session and stores it on the web server’s filesystem. HTTP::
RecordedSession reads the recorded session from the filesystem and formats it for
playback using HTTP::WebTest or HTTP::Monkeywrench. This is useful when writ-
ing acceptance and regression tests.

Many other benchmark utilities are available both for free and for money. If you find
that none of these suits your needs, it’s quite easy to roll your own utility. The easi-
est way to do this is to write a Perl script that uses the LWP::Parallel::UserAgent and
Time::HiRes modules. The former module allows you to open many parallel connec-
tions and the latter allows you to take time samples with microsecond resolution.

Perl Code Benchmarking
If you want to benchmark your Perl code, you can use the Benchmark module. For
example, let’s say that our code generates many long strings and finally prints them
out. We wonder what is the most efficient way to handle this task—we can try to
concatenate the strings into a single string, or we can store them (or references to
them) in an array before generating the output. The easiest way to get an answer is to
try each approach, so we wrote the benchmark shown in Example 9-3.

,ch09.23629 Page 328 Thursday, November 18, 2004 12:39 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Perl Code Benchmarking | 329

As you can see, we generate three big strings and then use three anonymous func-
tions to print them out. The first one (ref_array) stores the references to the strings
in an array. The second function (array) stores the strings themselves in an array.
The third function (concat) concatenates the three strings into a single string. At the
end of each function we print the stored data. If the data structure includes refer-
ences, they are first dereferenced (relevant for the first function only). We execute
each subtest 100,000 times to get more precise results. If your results are too close
and are below 1 CPU clocks, you should try setting the number of iterations to a big-
ger number. Let’s execute this benchmark and check the results:

panic% perl strings_benchmark.pl
Benchmark: timing 100000 iterations of array, concat, ref_array...
 array: 2 wallclock secs (2.64 usr + 0.23 sys = 2.87 CPU)
 concat: 2 wallclock secs (1.95 usr + 0.07 sys = 2.02 CPU)
 ref_array: 3 wallclock secs (2.02 usr + 0.22 sys = 2.24 CPU)

First, it’s important to remember that the reported wallclock times can be misleading
and thus should not be relied upon. If during one of the subtests your computer was

Example 9-3. strings_benchmark.pl

use Benchmark;
use Symbol;
my $fh = gensym;

open $fh, ">/dev/null" or die $!;

my($one, $two, $three) = map { $_ x 4096 } 'a'..'c';

timethese(100_000, {
 ref_array => sub {
 my @a;
 push @a, \($one, $two, $three);
 my_print(@a);
 },
 array => sub {
 my @a;
 push @a, $one, $two, $three;
 my_print(@a);
 },
 concat => sub {
 my $s;
 $s .= $one;
 $s .= $two;
 $s .= $three;
 my_print($s);
 },
});
sub my_print {
 for (@_) {
 print $fh ref($_) ? $$_ : $_;
 }
}

,ch09.23629 Page 329 Thursday, November 18, 2004 12:39 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

330 | Chapter 9: Essential Tools for Performance Tuning

more heavily loaded than during the others, it’s possible that this particular subtest will
take more wallclocks to complete, but this doesn’t matter for our purposes. What mat-
ters is the CPU clocks, which tell us the exact amount of CPU time each test took to
complete. You can also see the fraction of the CPU allocated to usr and sys, which
stand for the user and kernel (system) modes, respectively. This tells us what propor-
tions of the time the subtest has spent running code in user mode and in kernel mode.

Now that you know how to read the results, you can see that concatenation outper-
forms the two array functions, because concatenation only has to grow the size of the
string, whereas array functions have to extend the array and, during the print, iterate
over it. Moreover, the array method also creates a string copy before appending the
new element to the array, which makes it the slowest method of the three.

Let’s make the strings much smaller. Using our original code with a small correction:

my($one, $two, $three) = map { $_ x 8 } 'a'..'c';

we now make three strings of 8 characters, instead of 4,096. When we execute the
modified version we get the following picture:

Benchmark: timing 100000 iterations of array, concat, ref_array...
 array: 1 wallclock secs (1.59 usr + 0.01 sys = 1.60 CPU)
 concat: 1 wallclock secs (1.16 usr + 0.04 sys = 1.20 CPU)
 ref_array: 2 wallclock secs (1.66 usr + 0.05 sys = 1.71 CPU)

Concatenation still wins, but this time the array method is a bit faster than ref_array,
because the overhead of taking string references before pushing them into an array
and dereferencing them afterward during print() is bigger than the overhead of
making copies of the short strings.

As these examples show, you should benchmark your code by rewriting parts of the
code and comparing the benchmarks of the modified and original versions.

Also note that benchmarks can give different results under different versions of the
Perl interpreter, because each version might have built-in optimizations for some of
the functions. Therefore, if you upgrade your Perl interpreter, it’s best to benchmark
your code again. You may see a completely different result.

Another Perl code benchmarking method is to use the Time::HiRes module, which
allows you to get the runtime of your code with a fine-grained resolution of the order
of microseconds. Let’s compare a few methods to multiply two numbers (see
Example 9-4).

Example 9-4. hires_benchmark_time.pl

use Time::HiRes qw(gettimeofday tv_interval);
my %subs = (
 obvious => sub {
 $_[0] * $_[1]
 },
 decrement => sub {

,ch09.23629 Page 330 Thursday, November 18, 2004 12:39 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Perl Code Benchmarking | 331

We have used two methods here. The first (obvious) is doing the normal multiplica-
tion, $z=$x*$y. The second method is using a trick of the systems where there is no
built-in multiplication function available; it uses only the addition and subtraction
operations. The trick is to add $x for $y times (as you did in school before you
learned multiplication).

When we execute the code, we get:

panic% perl hires_benchmark_time.pl
decrement: Doing 10 * 10 = 100 took 0.000064 seconds
obvious : Doing 10 * 10 = 100 took 0.000016 seconds

decrement: Doing 10 * 100 = 1000 took 0.000029 seconds
obvious : Doing 10 * 100 = 1000 took 0.000013 seconds

decrement: Doing 100 * 10 = 1000 took 0.000098 seconds
obvious : Doing 100 * 10 = 1000 took 0.000013 seconds

decrement: Doing 100 * 100 = 10000 took 0.000093 seconds
obvious : Doing 100 * 100 = 10000 took 0.000012 seconds

Note that if the processor is very fast or the OS has a coarse time-resolution granular-
ity (i.e., cannot count microseconds) you may get zeros as reported times. This of
course shouldn’t be the case with applications that do a lot more work.

If you run this benchmark again, you will notice that the numbers will be slightly dif-
ferent. This is because the code measures absolute time, not the real execution time
(unlike the previous benchmark using the Benchmark module).

 my $a = shift;
 my $c = 0;
 $c += $_[0] while $a--;
 $c;
 },
);

for my $x (qw(10 100)) {
 for my $y (qw(10 100)) {
 for (sort keys %subs) {
 my $start_time = [gettimeofday];
 my $z = $subs{$_}->($x,$y);
 my $end_time = [gettimeofday];
 my $elapsed = tv_interval($start_time,$end_time);
 printf "%-9.9s: Doing %3.d * %3.d = %5.d took %f seconds\n",
 $_, $x, $y, $z, $elapsed;
 }
 print "\n";
 }
}

Example 9-4. hires_benchmark_time.pl (continued)

,ch09.23629 Page 331 Thursday, November 18, 2004 12:39 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

332 | Chapter 9: Essential Tools for Performance Tuning

You can see that doing 10*100 as opposed to 100*10 results in quite different results
for the decrement method. When the arguments are 10*100, the code performs the
add 100 operation only 10 times, which is obviously faster than the second invoca-
tion, 100*10, where the code performs the add 10 operation 100 times. However, the
normal multiplication takes a constant time.

Let’s run the same code using the Benchmark module, as shown in Example 9-5.

Now let’s execute the code:

panic% perl hires_benchmark.pl
Testing 10*10
Benchmark: timing 300000 iterations of decrement, obvious...
 decrement: 4 wallclock secs (4.27 usr + 0.09 sys = 4.36 CPU)
 obvious: 1 wallclock secs (0.91 usr + 0.00 sys = 0.91 CPU)

Testing 10*100
Benchmark: timing 300000 iterations of decrement, obvious...
 decrement: 5 wallclock secs (3.74 usr + 0.00 sys = 3.74 CPU)
 obvious: 0 wallclock secs (0.87 usr + 0.00 sys = 0.87 CPU)

Testing 100*10
Benchmark: timing 300000 iterations of decrement, obvious...
 decrement: 24 wallclock secs (24.41 usr + 0.00 sys = 24.41 CPU)
 obvious: 2 wallclock secs (0.86 usr + 0.00 sys = 0.86 CPU)

Example 9-5. hires_benchmark.pl

use Benchmark;
my %subs = (
 obvious => sub {
 $_[0] * $_[1]
 },
 decrement => sub {
 my $a = shift;
 my $c = 0;
 $c += $_[0] while $a--;
 $c;
 },
);

for my $x (qw(10 100)) {
 for my $y (qw(10 100)) {
 print "\nTesting $x*$y\n";
 timethese(300_000, {
 obvious => sub {$subs{obvious}->($x, $y) },
 decrement => sub {$subs{decrement}->($x, $y)},
 });
 }
}

,ch09.23629 Page 332 Thursday, November 18, 2004 12:39 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Process Memory Measurements | 333

Testing 100*100
Benchmark: timing 300000 iterations of decrement, obvious...
 decrement: 23 wallclock secs (23.64 usr + 0.07 sys = 23.71 CPU)
 obvious: 0 wallclock secs (0.80 usr + 0.00 sys = 0.80 CPU)

You can observe exactly the same behavior, but this time using the average CPU
clocks collected over 300,000 tests and not the absolute time collected over a single
sample. Obviously, you can use the Time::HiRes module in a benchmark that will
execute the same code many times to report a more precise runtime, similar to the
way the Benchmark module reports the CPU time.

However, there are situations where getting the average speed is not enough. For
example, if you’re testing some code with various inputs and calculate only the aver-
age processing times, you may not notice that for some particular inputs the code is
very ineffective. Let’s say that the average is 0.72 seconds. This doesn’t reveal the possi-
ble fact that there were a few cases when it took 20 seconds to process the input.
Therefore, getting the variance* in addition to the average may be important. Unfortu-
nately Benchmark.pm cannot provide such results—system timers are rarely good
enough to measure fast code that well, even on single-user systems, so you must run
the code thousands of times to get any significant CPU time. If the code is slow enough
that each single execution can be measured, most likely you can use the profiling tools.

Process Memory Measurements
A very important aspect of performance tuning is to make sure that your applica-
tions don’t use too much memory. If they do, you cannot run many servers, and
therefore in most cases, under a heavy load the overall performance will be degraded.
The code also may leak memory, which is even worse, since if the same process
serves many requests and more memory is used after each request, after a while all
the RAM will be used and the machine will start swapping (i.e., using the swap parti-
tion). This is a very undesirable situation, because when the system starts to swap,
the performance will suffer badly. If memory consumption grows without bound, it
will eventually lead to a machine crash.

The simplest way to figure out how big the processes are and to see whether they are
growing is to watch the output of the top(1) or ps(1) utilities.

For example, here is the output of top(1):

8:51am up 66 days, 1:44, 1 user, load average: 1.09, 2.27, 2.61
 95 processes: 92 sleeping, 3 running, 0 zombie, 0 stopped
 CPU states: 54.0% user, 9.4% system, 1.7% nice, 34.7% idle

* See Chapter 15 in the book Mastering Algorithms with Perl, by Jon Orwant, Jarkko Hietaniemi, and John
Macdonald (O’Reilly). Of course, there are gazillions of statistics-related books and resources on the Web;
http://mathforum.org/ and http://mathworld.wolfram.com/ are two good starting points for anything that has
to do with mathematics.

,ch09.23629 Page 333 Thursday, November 18, 2004 12:39 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

334 | Chapter 9: Essential Tools for Performance Tuning

 Mem: 387664K av, 309692K used, 77972K free, 111092K shrd, 70944K buff
 Swap: 128484K av, 11176K used, 117308K free 170824K cached

 PID USER PRI NI SIZE RSS SHARE STAT LIB %CPU %MEM TIME COMMAND
 29225 nobody 0 0 9760 9760 7132 S 0 12.5 2.5 0:00 httpd_perl
 29220 nobody 0 0 9540 9540 7136 S 0 9.0 2.4 0:00 httpd_perl
 29215 nobody 1 0 9672 9672 6884 S 0 4.6 2.4 0:01 httpd_perl
 29255 root 7 0 1036 1036 824 R 0 3.2 0.2 0:01 top
376 squid 0 0 15920 14M 556 S 0 1.1 3.8 209:12 squid
 29227 mysql 5 5 1892 1892 956 S N 0 1.1 0.4 0:00 mysqld
 29223 mysql 5 5 1892 1892 956 S N 0 0.9 0.4 0:00 mysqld
 29234 mysql 5 5 1892 1892 956 S N 0 0.9 0.4 0:00 mysqld

This starts with overall information about the system and then displays the most
active processes at the given moment. So, for example, if we look at the httpd_perl
processes, we can see the size of the resident (RSS) and shared (SHARE) memory seg-
ments.* This sample was taken on a production server running Linux.

But of course we want to see all the apache/mod_perl processes, and that’s where
ps(1) comes in. The options of this utility vary from one Unix flavor to another, and
some flavors provide their own tools. Let’s check the information about mod_perl
processes:

panic% ps -o pid,user,rss,vsize,%cpu,%mem,ucomm -C httpd_perl
 PID USER RSS VSZ %CPU %MEM COMMAND
29213 root 8584 10264 0.0 2.2 httpd_perl
29215 nobody 9740 11316 1.0 2.5 httpd_perl
29216 nobody 9668 11252 0.7 2.4 httpd_perl
29217 nobody 9824 11408 0.6 2.5 httpd_perl
29218 nobody 9712 11292 0.6 2.5 httpd_perl
29219 nobody 8860 10528 0.0 2.2 httpd_perl
29220 nobody 9616 11200 0.5 2.4 httpd_perl
29221 nobody 8860 10528 0.0 2.2 httpd_perl
29222 nobody 8860 10528 0.0 2.2 httpd_perl
29224 nobody 8860 10528 0.0 2.2 httpd_perl
29225 nobody 9760 11340 0.7 2.5 httpd_perl
29235 nobody 9524 11104 0.4 2.4 httpd_perl

Now you can see the resident (RSS) and virtual (VSZ) memory segments (and the
shared memory segment if you ask for it) of all mod_perl processes. Please refer to
the top(1) and ps(1) manpages for more information.

You probably agree that using top(1) and ps(1) is cumbersome if you want to use
memory-size sampling during the benchmark test. We want to have a way to print
memory sizes during program execution at the desired places. The GTop module,
which is a Perl glue to the libgtop library, is exactly what we need for that task.

You are fortunate if you run Linux or any of the BSD flavors, as the libgtop C library
from the GNOME project is supported on those platforms. This library provides an

* You can tell top to sort the entries by memory usage by pressing M while viewing the top screen.

,ch09.23629 Page 334 Thursday, November 18, 2004 12:39 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Apache::Status and Measuring Code Memory Usage | 335

API to access various system-wide and process-specific information. (Some other
operating systems also support libgtop.)

With GTop, if we want to print the memory size of the current process we’d just
execute:

use GTop ();
print GTop->new->proc_mem($$)->size;

$$ is the Perl special variable that gives the process ID (PID) of the currently running
process.

If you want to look at some other process and you have the necessary permission,
just replace $$ with the other process’s PID and you can peek inside it. For example,
to check the shared size, you’d do:

print GTop->new->proc_mem($$)->share;

Let’s try to run some tests:

panic% perl -MGTop -e 'my $g = GTop->new->proc_mem($$); \
 printf "%5.5s => %d\n",$_,$g->$_() for qw(size share vsize rss)'

 size => 1519616
share => 1073152
vsize => 2637824
 rss => 1515520

We have just printed the memory sizes of the process: the real, the shared, the vir-
tual, and the resident (not swapped out).

There are many other things GTop can do for you—please refer to its manpage for
more information. We are going to use this module in our performance tuning tips
later in this chapter, so you will be able to exercise it a lot.

If you are running a true BSD system, you may use BSD::Resource::getrusage instead
of GTop. For example:

print "used memory = ".(BSD::Resource::getrusage)[2]."\n"

For more information, refer to the BSD::Resource manpage.

The Apache::VMonitor module, with the help of the GTop module, allows you to
watch all your system information using your favorite browser, from anywhere in the
world, without the need to telnet to your machine. If you are wondering what infor-
mation you can retrieve with GTop, you should look at Apache::VMonitor, as it utilizes
a large part of the API GTop provides.

Apache::Status and Measuring Code
Memory Usage
The Apache::Status module allows you to peek inside the Perl interpreter in the
Apache web server. You can watch the status of the Perl interpreter: what modules

,ch09.23629 Page 335 Thursday, November 18, 2004 12:39 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

336 | Chapter 9: Essential Tools for Performance Tuning

and Registry scripts are compiled in, the content of variables, the sizes of the subrou-
tines, and more.

To configure this module you should add the following section to your httpd.conf
file:

<Location /perl-status>
 SetHandler perl-script
 PerlHandler +Apache::Status
</Location>

and restart Apache.

Now when you access the location http://localhost:8000/perl-status you will see a
menu (shown in Figure 9-1) that leads you into various sections that will allow you
to explore the innards of the Perl interpreter.

When you use this module for debugging, it’s best to run the web server in single-
server mode (httpd -X). If you don’t you can get confused, because various child pro-
cesses might show different information. It’s simpler to work with a single process.

To enable the Apache::Status modules to present more exotic information, make
sure that the following modules are installed: Data::Dumper, Apache::Peek, Devel::
Peek, B::LexInfo, B::Deparse, B::Terse, and B::TerseSize. Some of these modules are
bundled with Perl; others should be installed by hand.

Figure 9-1. Main menu for Apache::Status

,ch09.23629 Page 336 Thursday, November 18, 2004 12:39 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Apache::Status and Measuring Code Memory Usage | 337

When you have the aforementioned modules installed, add these directives to your
httpd.conf file:

PerlSetVar StatusOptionsAll On
PerlSetVar StatusDumper On
PerlSetVar StatusPeek On
PerlSetVar StatusLexInfo On
PerlSetVar StatusDeparse On
PerlSetVar StatusDeparseOptions "-p -sC"
PerlSetVar StatusTerse On
PerlSetVar StatusTerseSize On
PerlSetVar StatusTerseSizeMainSummary On

and restart Apache. Alternatively, if you enable all the options, you can use the
option StatusOptionsAll to replace all the options that can be On or Off, so you end
up with just these two lines:

PerlSetVar StatusOptionsAll On
PerlSetVar StatusDeparseOptions "-p -sC"

When you explore the contents of the compiled Perl module or Registry script, at the
bottom of the screen you will see a Memory Usage link. When you click on it, you
will be presented with a list of funtions in the package. For each function, the size
and the number of OP codes will be shown.

For example, let’s create a module that prints the contents of the %ENV hash. This
module is shown in Example 9-6.

Now add the following to httpd.conf:

<Location /dumpenv>
 SetHandler perl-script
 PerlHandler +Book::DumpEnv
</Location>

Restart the server in single-server mode (httpd -X), request the URL http://localhost:
8000/dumpenv, and you will see that the contents of %ENV are displayed.

Now it’s time to peek inside the Book::DumpEnv package inside the Perl interpreter.
Issue the request to http://localhost:8000/perl-status, click on the “Loaded Modules”
menu item, and locate Book::DumpEnv on the displayed page. Click on it to request a

Example 9-6. Book/DumpEnv.pm

package Book::DumpEnv;
use strict;
use Apache::Constants qw(:common);
sub handler {
 shift->send_http_header('text/plain');
 print map {"$_ => $ENV{$_}\n"} keys %ENV;
 return OK;
}
1;

,ch09.23629 Page 337 Thursday, November 18, 2004 12:39 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

338 | Chapter 9: Essential Tools for Performance Tuning

page at the URI http://localhost:8000/perl-status?Book::DumpEnv. You will see the
screen shown in Figure 9-2.

You can see seven functions that were imported with:

use Apache::Constants qw(:common);

and a single function that we have created, called handler. No other Perl variable
types were created in the package Book::DumpEnv.

Now click on the “Memory Usage” link at the bottom of the page. The screen shown
in Figure 9-3 will be rendered.

So you can see that Book::DumpEnv takes 3,427 bytes in memory, whereas the handler
function takes 2,362 bytes.

Is this all? No, we can go even further inside the code and learn the syntax tree size
(i.e., what opcodes construct each line of the source code and how many bytes each
source-code line consumes). If we click on handler we will see the syntax tree of this
function, and how much memory each Perl OPcode and line of code take. For exam-
ple, in Figure 9-4 we can see that line 7, which corresponds to this source-code line
in Book/DumpEnv.pm:

7: return OK;

takes up 136 bytes of memory.

Figure 9-2. Data structures compiled in the module

,ch09.23629 Page 338 Thursday, November 18, 2004 12:39 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Apache::Status and Measuring Code Memory Usage | 339

We found the corresponding source-code line by clicking the “line 7” hyperlink
shown in Figure 9-4, which displays the source code of the module with the relevant
line highlighted (see Figure 9-5).

Now you should be able to to find out how much memory each subroutine or even
each individual source line of Perl code consumes. This will allow you to optimize
memory usage by comparing several implemenations of the same algorithm and
choosing the one that consumes the smallest amount of memory.

Figure 9-3. Book::DumpEnv memory usage

Figure 9-4. Per line and Perl OPcode memory usage

,ch09.23629 Page 339 Thursday, November 18, 2004 12:39 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

340 | Chapter 9: Essential Tools for Performance Tuning

Code Profiling Techniques
The profiling process helps you to determine which subroutines (or just snippets of
code) take longest to execute and which subroutines are called most often. You will
probably want to optimize these.

When do you need to profile your code? You do that when you suspect that some
part of your code is called very often and maybe there is a need to optimize it, which
could significantly improve the overall performance.

Profiling with Devel::DProf
Devel::DProf collects information on the execution time of a Perl script and of the
subroutines in that script.

Let’s take for example the diagnostics pragma and measure the impact of its usage
on the program compilation and execution speed. This pragma extends the terse
diagnostics normally emitted by both the Perl compiler and the Perl interpreter, aug-
menting them with the more verbose and endearing descriptions found in the
perldiag manpage. We have claimed that this pragma should not be used on a pro-
duction server. We are going to use Devel::DProf to explain our claim.

We will run a benchmark, once with diagnostics enabled and once disabled, on a
subroutine called test_code().

The code inside the subroutine does either a lexical or a numeric comparison of two
strings. It assigns one string to another if the condition tests true, but the condition is
always false. To demonstrate the diagnostics pragma overhead, the comparison
operator that we use in Example 9-7 is intentionally wrong. It should be a string
comparison (eq), and we use a numeric one (= =).

Figure 9-5. Source code corresponding to the OPcodes

,ch09.23629 Page 340 Thursday, November 18, 2004 12:39 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Code Profiling Techniques | 341

For only a few lines of code we get:

Off: 1 wallclock secs (0.81 usr + 0.00 sys = 0.81 CPU)
On : 13 wallclock secs (12.54 usr + 0.01 sys = 12.55 CPU)

With diagnostics enabled, the subroutine test_code() is 16 times slower (12.55/0.81:
remember that we’re talking in CPU time, not wallclock seconds) than with diagnos-
tics disabled!

Now let’s fix the comparison the way it should be, by replacing = = with eq, so we
get:

my ($a, $b) = qw(foo bar);
my $c;
if ($a eq $b) {
 $c = $a;
}

and run the same benchmark again:

Off: 1 wallclock secs (0.57 usr + 0.00 sys = 0.57 CPU)
On : 1 wallclock secs (0.56 usr + 0.00 sys = 0.56 CPU)

Now there is no overhead at all. The diagnostics pragma slows things down only
when warnings are generated.

After we have verified that using the diagnostics pragma might add a big overhead
to execution runtime, let’s use code profiling to understand why this happens. We
use Devel::DProf to profile the code shown in Example 9-8.

Example 9-7. bench_diagnostics.pl

use Benchmark;
use diagnostics;
use strict;

my $count = 50000;

disable diagnostics;
my $t1 = timeit($count,\&test_code);

enable diagnostics;
my $t2 = timeit($count,\&test_code);

print "Off: ",timestr($t1),"\n";
print "On : ",timestr($t2),"\n";

sub test_code {
 my ($a, $b) = qw(foo bar);
 my $c;
 if ($a = = $b) {
 $c = $a;
 }
}

,ch09.23629 Page 341 Thursday, November 18, 2004 12:39 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

342 | Chapter 9: Essential Tools for Performance Tuning

Run it with the profiler enabled, and then create the profiling statistics with the help
of dprofpp:

panic% perl -d:DProf diagnostics.pl
panic% dprofpp

Total Elapsed Time = 0.342236 Seconds
 User+System Time = 0.335420 Seconds
Exclusive Times
%Time ExclSec CumulS #Calls sec/call Csec/c Name
 92.1 0.309 0.358 1 0.3089 0.3578 main::BEGIN
 14.9 0.050 0.039 3161 0.0000 0.0000 diagnostics::unescape
 2.98 0.010 0.010 2 0.0050 0.0050 diagnostics::BEGIN
 0.00 0.000 -0.000 2 0.0000 - Exporter::import
 0.00 0.000 -0.000 2 0.0000 - Exporter::export
 0.00 0.000 -0.000 1 0.0000 - Config::BEGIN
 0.00 0.000 -0.000 1 0.0000 - Config::TIEHASH
 0.00 0.000 -0.000 2 0.0000 - Config::FETCH
 0.00 0.000 -0.000 1 0.0000 - diagnostics::import
 0.00 0.000 -0.000 1 0.0000 - main::test_code
 0.00 0.000 -0.000 2 0.0000 - diagnostics::warn_trap
 0.00 0.000 -0.000 2 0.0000 - diagnostics::splainthis
 0.00 0.000 -0.000 2 0.0000 - diagnostics::transmo
 0.00 0.000 -0.000 2 0.0000 - diagnostics::shorten
 0.00 0.000 -0.000 2 0.0000 - diagnostics::autodescribe

It’s not easy to see what is responsible for this enormous overhead, even if main::
BEGIN seems to be running most of the time. To get the full picture we must see the
OPs tree, which shows us who calls whom, so we run:

panic% dprofpp -T

The output is:

main::BEGIN
 diagnostics::BEGIN
 Exporter::import
 Exporter::export
 diagnostics::BEGIN
 Config::BEGIN
 Config::TIEHASH
 Exporter::import

Example 9-8. diagnostics.pl

use diagnostics;

test_code();
sub test_code {
 my($a, $b) = qw(foo bar);
 my $c;
 if ($a = = $b) {
 $c = $a;
 }
}

,ch09.23629 Page 342 Thursday, November 18, 2004 12:39 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Code Profiling Techniques | 343

 Exporter::export
 Config::FETCH
 Config::FETCH
 diagnostics::unescape

 3159 times [diagnostics::unescape] snipped

 diagnostics::unescape
 diagnostics::import
diagnostics::warn_trap
 diagnostics::splainthis
 diagnostics::transmo
 diagnostics::shorten
 diagnostics::autodescribe
main::test_code
 diagnostics::warn_trap
 diagnostics::splainthis
 diagnostics::transmo
 diagnostics::shorten
 diagnostics::autodescribe
 diagnostics::warn_trap
 diagnostics::splainthis
 diagnostics::transmo
 diagnostics::shorten
 diagnostics::autodescribe

So we see that 2 executions of diagnostics::BEGIN and 3,161 of diagnostics::
unescape are responsible for most of the running overhead.

If we comment out the diagnostics module, we get:

Total Elapsed Time = 0.079974 Seconds
 User+System Time = 0.059974 Seconds
Exclusive Times
%Time ExclSec CumulS #Calls sec/call Csec/c Name
 0.00 0.000 -0.000 1 0.0000 - main::test_code

It is possible to profile code running under mod_perl with the Devel::DProf module,
available on CPAN. However, you must have PerlChildExitHandler enabled during
the mod_perl build process. When the server is started, Devel::DProf installs an END
block to write the tmon.out file. This block will be called at server shutdown. Here is
how to start and stop a server with the profiler enabled:

panic% setenv PERL5OPT -d:DProf
panic% httpd -X -d `pwd` &
... make some requests to the server here ...
panic% kill `cat logs/httpd.pid`
panic% unsetenv PERL5OPT
panic% dprofpp

The Devel::DProf package is a Perl code profiler. It will collect information on the
execution time of a Perl script and of the subroutines in that script (remember that
print() and map() are just like any other subroutines you write, but they come bun-
dled with Perl!).

,ch09.23629 Page 343 Thursday, November 18, 2004 12:39 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

344 | Chapter 9: Essential Tools for Performance Tuning

Another approach is to use Apache::DProf, which hooks Devel::DProf into mod_perl.
The Apache::DProf module will run a Devel::DProf profiler inside the process and
write the tmon.out file in the directory $ServerRoot/logs/dprof/$$ (make sure that it’s
writable by the server!) when the process is shut down (where $$ is the PID of the
process). All it takes to activate this module is to modify httpd.conf.

You can test for a command-line switch in httpd.conf. For example, to test if the
server was started with -DPERLDPROF, use:

<Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 <IfDefine PERLDPROF>
 PerlModule Apache::DProf
 </IfDefine>
</Location>

And to activate profiling, use:

panic% httpd -X -DPERLDPROF &

Remember that any PerlHandler that was pulled in before Apache::DProf in the httpd.
conf or startup.pl file will not have code-debugging information inserted. To run
dprofpp, chdir to $ServerRoot/logs/dprof/$$* and run:

panic% dprofpp

Use the command-line options for dropfpp(1) if a nondefault output is desired, as
explained in the dropfpp manpage. You might especially want to look at the -r switch
to display wallclock times (more relevant in a web-serving environment) and the -l
switch to sort by number of subroutine calls.

If you are running Perl 5.6.0 or higher, take a look at the new module Devel::
Profiler (Version 0.04 as of this writing), which is supposed to be a drop-in replace-
ment for Apache::DProf, with improved functionality and stability.

Profiling with Devel::SmallProf
The Devel::SmallProf profiler is focused on the time taken for a program run on a
line-by-line basis. It is called “small” because it’s supposed to impose very little extra
load on the machine (speed- and memory-wise) while profiling the code.

Let’s take a look at the simple example shown in Example 9-9.

* Look up the ServerRoot directive’s value in httpd.conf to figure out what your $ServerRoot is.

Example 9-9. table_gen.pl

for (1..1000) {
 my @rows = ();
 push @rows, Tr(map { td($_) } 'a'..'d');

,ch09.23629 Page 344 Thursday, November 18, 2004 12:39 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Code Profiling Techniques | 345

It creates the same HTML table in $var, with the cells of the table filled with single
letters. The functions table(), Tr(), and td() insert the data into appropriate
HTML tags. Notice that we have used Tr() and not tr(), since the latter is a built-in
Perl function, and we have used the same function name as in CGI.pm that does the
same thing. If we print $var we will see something like this:

<table>
 <tr><td>a</td> <td>b</td> <td>c</td> <td>d</td></tr>
 <tr><td>e</td> <td>f</td> <td>g</td> <td>h</td></tr>
</table>

We have looped a thousand times through the same code in order to get a more pre-
cise speed measurement. If the code runs very quickly we won’t be able to get any
meaningful results from just one loop.

If we run this code with Devel::SmallProf:

panic% perl -d:SmallProf table_gen.pl

we get the following output in the autogenerated smallprof.out file:

count wall tm cpu time line
 1001 0.003855 0.030000 1: for (1..1000) {
 1000 0.004823 0.040000 2: my @rows = ();
 5000 0.272651 0.410000 3: push @rows, Tr(map { td($_) }
 5000 0.267107 0.360000 4: push @rows, Tr(map { td($_) }
 1000 0.067115 0.120000 5: my $var = table(@rows);
 0 0.000000 0.000000 6: }
 3000 0.033798 0.080000 7: sub table { my @rows = @_; return
 6000 0.078491 0.120000 8: sub Tr { my @cells = @_; return
 24000 0.267353 0.490000 9: sub td { my $cell = shift; return
 0 0.000000 0.000000 10:

We can see in the CPU time column that Perl spends most of its time in the td()
function; it’s also the code that’s visited by Perl the most times. In this example we
could find this out ourselves without much effort, but if the code is longer it will be
harder to find the lines of code where Perl spends most of its time. So we sort the
output by the third column as a numerical value, in descending order:

panic% sort -k 3nr,3 smallprof.out | less
 24000 0.267353 0.490000 9: sub td { my $cell = shift; return
 5000 0.272651 0.410000 3: push @rows, Tr(map { td($_) }
 5000 0.267107 0.360000 4: push @rows, Tr(map { td($_) }
 1000 0.067115 0.120000 5: my $var = table(@rows);
 6000 0.078491 0.120000 8: sub Tr { my @cells = @_; return
 3000 0.033798 0.080000 7: sub table { my @rows = @_; return

 push @rows, Tr(map { td($_) } 'e'..'h');
 my $var = table(@rows);
}
sub table { my @rows = @_; return "<table>\n@rows</table>\n";}
sub Tr { my @cells = @_; return "<tr>@cells</tr>\n"; }
sub td { my $cell = shift; return "<td>$cell</td>"; }

Example 9-9. table_gen.pl (continued)

,ch09.23629 Page 345 Thursday, November 18, 2004 12:39 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

346 | Chapter 9: Essential Tools for Performance Tuning

 1000 0.004823 0.040000 2: my @rows = ();
 1001 0.003855 0.030000 1: for (1..1000) {

According to the Devel::SmallProf manpage, the wallclock’s measurements are fairly
accurate (we suppose that they’re correct on an unloaded machine), but CPU clock
time is always more accurate. That’s because if it takes more than one CPU time slice
for a directive to complete, the time that some other process uses CPU is counted in
the wallclock counts. Since the load on the same machine may vary greatly from
moment to moment, it’s possible that if we rerun the same test a few times we will
get inconsistent results.

Let’s try to improve the td() function and at the same time the Tr() and table()
functions. We will not copy the passed arguments, but we will use them directly in
all three functions. Example 9-10 shows the new version of our script.

Now let’s rerun the code with the profiler:

panic% perl -d:SmallProf table_gen2.pl

The results are much better now—only 0.34 CPU clocks are spent in td(), versus 0.49
in the earlier run:

panic% sort -k 3nr,3 smallprof.out | less
 5000 0.279138 0.400000 4: push @rows, Tr(map { td($_) }
 16000 0.241350 0.340000 9: sub td { return "<td>@_</td>"; }
 5000 0.269940 0.320000 3: push @rows, Tr(map { td($_) }
 4000 0.050050 0.130000 8: sub Tr { return "<tr>@_</tr>\n"; }
 1000 0.065324 0.080000 5: my $var = table(@rows);
 1000 0.006650 0.010000 2: my @rows = ();
 2000 0.020314 0.030000 7: sub table{ return "<table>\n@_</table>\n";}
 1001 0.006165 0.030000 1: for (1..1000) {

You will also notice that Devel::SmallProf reports that the functions were executed
different numbers of times in the two runs. That’s because in our original example all
three functions had two statements on each line, but in the improved version they
each had only one. Devel::SmallProf looks at the code after it’s been parsed and
optimized by Perl—thus, if some optimizations took place, it might not be exactly
the same as the code that you wrote.

Example 9-10. table_gen2.pl

for (1..1000) {
 my @rows = ();
 push @rows, Tr(map { td($_) } 'a'..'d');
 push @rows, Tr(map { td($_) } 'e'..'h');
 my $var = table(@rows);
}
sub table { return "<table>\n@_</table>\n";}
sub Tr { return "<tr>@_</tr>\n"; }
sub td { return "<td>@_</td>"; }

,ch09.23629 Page 346 Thursday, November 18, 2004 12:39 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

References | 347

In most cases you will probably find Devel::DProf more useful than Devel::
SmallProf, as it allows you to analyze the code by subroutine and not by line.

Just as there is the Apache::DProf equivalent for Devel::DProf, there is the Apache::
SmallProf equivalent for Devel::SmallProf. It uses a configuration similar to Apache::
DProf—i.e., it is registered as a PerlFixupHandler—but it also requires Apache::DB.
Therefore, to use it you should add the following configuration to httpd.conf:

<Perl>
 if (Apache->define('PERLSMALLPROF')) {
 require Apache::DB;
 Apache::DB->init;
 }
</Perl>

<Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 <IfDefine PERLSMALLPROF>
 PerlFixupHandler Apache::SmallProf
 </IfDefine>
</Location>

Now start the server:

panic% httpd -X -DPERLSMALLPROF &

This will activate Apache::SmallProf::handler during the request. As a result, the pro-
file files will be written to the $ServerRoot/logs/smallprof/ directory. Unlike with Devel::
SmallProf, the profile is split into several files based on package name. For example, if
CGI.pm was used, one of the generated profile files will be called CGI.pm.prof.

References
• The diagnostics pragma is a part of the Perl distribution. See perldoc diagnostics

for more information about the program, and perldoc perldiag for Perl diagnos-
tics; this is the source of this pragma’s information.

• ab(1) (ApacheBench) comes bundled with the Apache web server and is avail-
able from http://httpd.apache.org/.

• httperf(1) is available from http://www.hpl.hp.com/personal/David_Mosberger./
httperf.html.

• http_load(1) is available from http://www.acme.com/software/http_load/.

• BenchWeb (http://www.netlib.org/benchweb/) is a good starting point for finding
information about computer system performance benchmarks, benchmark
results, and benchmark code.

,ch09.23629 Page 347 Thursday, November 18, 2004 12:39 PM

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

348 | Chapter 9: Essential Tools for Performance Tuning

• The libgtop library (ftp://ftp.gnome.org/pub/GNOME/stable/sources/gtop/) is a
part of the GNOME project (http://www.gnome.org/). Also try http://fr.rpmfind.
net/linux/rpm2html/search.php?query=libgtop.

• Chapter 3 of Web Performance Tuning, by Patrick Killelea (O’Reilly).

• Chapter 9 of mod_perl Developer’s Cookbook, by Geoffrey Young, Paul Lindner,
and Randy Kobes (Sams).

,ch09.23629 Page 348 Thursday, November 18, 2004 12:39 PM

