é ,ch04.21778 Page 92 Thursday, November 18, 2004 12:35 PM

*

CHAPTER 4
mod_ perl Configuration

The next step after building and installing a mod_perl-enabled Apache server is to
configure it. This is done in two distinct steps: getting the server running with a stan-
dard Apache configuration, and then applying mod_perl-specific configuration direc-
tives to get the full benefit out of it.

For readers who haven’t previously been exposed to the Apache web server, our dis-
cussion begins with standard Apache directives and then continues with mod_perl-
specific material.

The startup.pl file can be used in many ways to improve performance. We will talk
about all these issues later in the book. In this chapter, we discuss the configuration
possibilities that the startup.pl file gives us.

<Perl> sections are a great time saver if you have complex configuration files. We’ll
talk about <Perl> sections in this chapter.

Another important issue we’ll cover in this chapter is how to validate the configura-
tion file. This is especially important on a live production server. If we break some-
thing and don’t validate it, the server won’t restart. This chapter discusses
techniques to prevent validation problems.

At the end of this chapter, we discuss various tips and tricks you may find useful for
server configuration, talk about a few security concerns related to server configura-
tion, and finally look at a few common pitfalls people encounter when they miscon-
figure their servers.

Apache Configuration

Apache configuration can be confusing. To minimize the number of things that can
go wrong, it’s a good idea to first configure Apache itself without mod_perl. So
before we go into mod_perl configuration, let’s look at the basics of Apache itself.

92

%

ﬁ

*@%

é ,ch04.21778 Page 93 Thursday, November 18, 2004 12:35 PM

Configuration Files

Prior to Version 1.3.4, the default Apache installation used three configuration files:
httpd.conf, srm.conf, and access.conf. Although there were historical reasons for hav-
ing three separate files (dating back to the NCSA server), it stopped mattering which
file you used for what a long time ago, and the Apache team finally decided to com-
bine them. Apache Versions 1.3.4 and later are distributed with the configuration
directives in a single file, httpd.conf. Therefore, whenever we mention a configura-
tion file, we are referring to httpd.conf.

By default, httpd.conf is installed in the conf directory under the server root direc-
tory. The default server root is /usr/local/apache/ on many Unix platforms, but it can
be any directory of your choice (within reason). Users new to Apache and mod_perl
will probably find it helpful to keep to the directory layouts we use in this book.

There is also a special file called .htaccess, used for per-directory configuration.
When Apache tries to access a file on the filesystem, it will first search for .htaccess
files in the requested file’s parent directories. If found, Apache scans .htaccess for fur-
ther configuration directives, which it then applies only to that directory in which the
file was found and its subdirectories. The name .htaccess is confusing, because it can
contain almost any configuration directives, not just those related to resource access
control. Note that if the following directive is in httpd.conf:

<Directory />

AllowOverride None

</Directory>
Apache will not look for .htaccess at all unless AllowOverride is set to a value other
than None in a more specific <Directory> section.

.htaccess can be renamed by using the AccessFileName directive. The following
example configures Apache to look in the target directory for a file called .acl
instead of .htaccess:

AccessFileName .acl

However, you must also make sure that this file can’t be accessed directly from the
Web, or else you risk exposing your configuration. This is done automatically for .ht*
files by Apache, but for other files you need to use:
<Files .acl>
Order Allow,Deny
Deny from all
</Files>
Another often-mentioned file is the startup file, usually named startup.pl. This file
contains Perl code that will be executed at server startup. We’ll discuss the startup.pl
file in greater detail later in this chapter, in the section entitled “The Startup File.”

Beware of editing httpd.conf without understanding all the implications. Modifying
the configuration file and adding new directives can introduce security problems and

Apache Configuration | 93

- ad

é ,ch04.21778 Page 94 Thursday, November 18, 2004 12:35 PM

have performance implications. If you are going to modify anything, read through
the documentation beforehand. The Apache distribution comes with an extensive
configuration manual. In addition, each section of the distributed configuration file
includes helpful comments explaining how each directive should be configured and
what the default values are.

If you haven’t moved Apache’s directories around, the installation program will con-
figure everything for you. You can just start the server and test it. To start the server,
use the apachectl utility bundled with the Apache distribution. It resides in the same
directory as httpd, the Apache server itself. Execute:

panic% /usr/local/apache/bin/apachectl start

Now you can test the server, for example by accessing http://localhost/ from a
browser running on the same host.

Configuration Directives

A basic setup requires little configuration. If you moved any directories after Apache
was installed, they should be updated in httpd.conf. Here are just a couple of exam-
ples:

ServerRoot "/usr/local/apache"

DocumentRoot "/usr/local/apache/docs"

You can change the port to which the server is bound by editing the Port directive.
This example sets the port to 8080 (the default for the HTTP protocol is 80):

Port 8080

You might want to change the user and group names under which the server will
run. If Apache is started by the user root (which is generally the case), the parent pro-
cess will continue to run as root, but its children will run as the user and group speci-
fied in the configuration, thereby avoiding many potential security problems. This
example uses the httpd user and group:

User httpd

Group httpd
Make sure that the user and group httpd already exist. They can be created using use-
radd(1) and groupadd(1) or equivalent utilities.

Many other directives may need to be configured as well. In addition to directives
that take a single value, there are whole sections of the configuration (such as the
<Directory> and <Location> sections) that apply to only certain areas of the web
space. The httpd.conf file supplies a few examples, and these will be discussed
shortly.

94 | Chapter4: mod_perl Configuration

- ad

é ,ch04.21778 Page 95 Thursday, November 18, 2004 12:35 PM

<Directory>, <Location>, and <Files> Sections

Let’s discuss the basics of the <Directory>, <lLocation>, and <Files> sections.
Remember that there is more to know about them than what we list here, and the
rest of the information is available in the Apache documentation. The information
we’ll present here is just what is important for understanding mod_perl configura-
tion.

Apache considers directories and files on the machine it runs on as resources. A par-
ticular behavior can be specified for each resource; that behavior will apply to every
request for information from that particular resource.

Directives in <Directory> sections apply to specific directories on the host machine,
and those in <Files> sections apply only to specific files (actually, groups of files
with names that have something in common). <Location> sections apply to specific
URIs. Locations are given relative to the document root, whereas directories are
given as absolute paths starting from the filesystem root (/). For example, in the
default server directory layout where the server root is /usr/local/apache and the doc-
ument root is /usr/locallapache/htdocs, files under the /usr/local/apache/htdocs/pub
directory can be referred to as:

<Directory /usr/local/apache/htdocs/pub>
</Directory>

or alternatively (and preferably) as:

<Location /pub>

</Location>
Exercise caution when using <Location> under Win32. The Windows family of oper-
ating systems are case-insensitive. In the above example, configuration directives
specified for the location /pub on a case-sensitive Unix machine will not be applied
when the request URI is /Pub. When URIs map to existing files, such as Apache::
Registry scripts, it is safer to use the <Directory> or <Files> directives, which cor-
rectly canonicalize filenames according to local filesystem semantics.

It is up to you to decide which directories on your host machine are mapped to
which locations. This should be done with care, because the security of the server
may be at stake. In particular, essential system directories such as /etc/ shouldn’t be
mapped to locations accessible through the web server. As a general rule, it might be
best to organize everything accessed from the Web under your ServerRoot, so that it
stays organized and you can keep track of which directories are actually accessible.

Locations do not necessarily have to refer to existing physical directories, but may
refer to virtual resources that the server creates upon a browser request. As you will
see, this is often the case for a mod_perl server.

When a client (browser) requests a resource (URI plus optional arguments) from the
server, Apache determines from its configuration whether or not to serve the request,

Apache Configuration | 95

4~ ~4]e

é ,ch04.21778 Page 96 Thursday, November 18, 2004 12:35 PM

whether to pass the request on to another server, what (if any) authentication and
authorization is required for access to the resource, and which module(s) should be
invoked to generate the response.

For any given resource, the various sections in the configuration may provide con-
flicting information. Consider, for example, a <Directory> section that specifies that
authorization is required for access to the resource, and a <Files> section that says
that it is not. It is not always obvious which directive takes precedence in such cases.
This can be a trap for the unwary.

<Directory directoryPath> ... </Directory>
Scope: Can appear in server and virtual host configurations.

<Directory> and </Directory> are used to enclose a group of directives that will
apply to only the named directory and its contents, including any subdirectories. Any
directive that is allowed in a directory context (see the Apache documentation) may

be used.

The path given in the <Directory> directive is either the full path to a directory, or a
string containing wildcard characters (also called globs). In the latter case, ? matches
any single character, * matches any sequence of characters, and [] matches character
ranges. These are similar to the wildcards used by sh and similar shells. For example:

<Directory /home/httpd/docs/foo[1-2]>

Options Indexes

</Directory>
will match /home/httpd/docs/fool and /home/httpd/docs/foo2. None of the wildcards
will match a / character. For example:

<Directory /home/httpd/docs>

Options Indexes
</Directory>

matches /home/httpd/docs and applies to all its subdirectories.

Matching a regular expression is done by using the <DirectoryMatch regex> ... </
DirectoryMatch> or <Directory ~ regex> ... </Directory> syntax. For example:

<DirectoryMatch /home/www/.*/public>

Options Indexes

</DirectoryMatch>
will match /home/www/foo/public but not /home/www/foo/private. In a regular
expression, .* matches any character (represented by .) zero or more times (repre-
sented by *). This is entirely different from the shell-style wildcards used by the
<Directory> directive. They make it easy to apply a common configuration to a set of
public directories. As regular expressions are more flexible than globs, this method
provides more options to the experienced user.

96 | Chapter4: mod_perl Configuration

4~ ~4]e

é ,ch04.21778 Page 97 Thursday, November 18, 2004 12:35 PM

If multiple (non-regular expression) <Directory> sections match the directory (or its
parents) containing a document, the directives are applied in the order of the short-
est match first, interspersed with the directives from any .htaccess files. Consider the
following configuration:

<Directory />

AllowOverride None
</Directory>

<Directory /home/httpd/docs/>
AllowOverride FileInfo
</Directory>
Let us detail the steps Apache goes through when it receives a request for the file
/home/httpd/docs/index.html:

1. Apply the directive AllowOverride None (disabling .htaccess files).

2. Apply the directive AllowOverride FileInfo for the directory /home/httpd/docs/
(which now enables .htaccess in /home/httpd/docs/ and its subdirectories).

3. Apply any directives in the group FileInfo, which control document types
(AddEncoding, AddLanguage, AddType, etc.—see the Apache documentation for
more information) found in /home/httpd/docs/.htaccess.

<Files filename > ... </Files>

Scope: Can appear in server and virtual host configurations, as well as in .htaccess
files.

The <Files> directive provides access control by filename and is comparable to the
<Directory> and <lLocation> directives. <Files> should be closed with the corre-
sponding </Files>. The directives specified within this section will be applied to any
object with a basename matching the specified filename. (A basename is the last
component of a path, generally the name of the file.)

<Files> sections are processed in the order in which they appear in the configuration
file, after the <Directory> sections and .htaccess files are read, but before <Location>
sections. Note that <Files> can be nested inside <Directory> sections to restrict the
portion of the filesystem to which they apply. However, <Files> cannot be nested
inside <Location> sections.

The filename argument should include a filename or a wildcard string, where ?
matches any single character and * matches any sequence of characters, just as with
<Directory> sections. Extended regular expressions can also be used, placing a tilde
character (~) between the directive and the regular expression. The regular expres-
sion should be in quotes. The dollar symbol ($) refers to the end of the string. The
pipe character (]) indicates alternatives, and parentheses (()) can be used for group-

Apache Configuration | 97

- ad

é ,ch04.21778 Page 98 Thursday, November 18, 2004 12:35 PM

ing. Special characters in extended regular expressions must be escaped with back-
slashes (\). For example:
<Files ~ "\.(pl|cgi)$">
SetHandler perl-script
PerlHandler Apache::Registry

Options +ExecCCI
</Files>

would match all the files ending with the .pl or .cgi extension (most likely Perl
scripts). Alternatively, the <FilesMatch regex> ... </FilesMatch> syntax can be used.

Regular Expressions

There is much more to regular expressions than what we have shown you here. As a
Perl programmer, learning to use regular expressions is very important, and what you
can learn there will be applicable to your Apache configuration too.

See the perlretut manpage and the book Mastering Regular Expressions by Jeffrey E. F.
Friedl (O’Reilly) for more information.

<Location URI> ... </Location>
Scope: Can appear in server and virtual host configurations.

The <Location> directive provides for directive scope limitation by URL. It is similar to
the <Directory> directive and starts a section that is terminated with the </Location>
directive.

<Location> sections are processed in the order in which they appear in the configura-
tion file, after the <Directory> sections, .htaccess files, and <Files> sections have been
interpreted.

The <Location> section is the directive that is used most often with mod_perl.

Note that URIs do not have to refer to real directories or files within the filesystem at
all; <Location> operates completely outside the filesystem. Indeed, it may sometimes
be wise to ensure that <Location>s do not match real paths, to avoid confusion.

The URI may use wildcards. In a wildcard string, ? matches any single character, *
matches any sequences of characters, and [] groups characters to match. For regu-
lar expression matches, use the <LocationMatch regex> ... </LocationMatch> syntax.

The <Location> functionality is especially useful when combined with the SetHandler
directive. For example, to enable server status requests (via mod_status) but allow
them only from browsers at *example.com, you might use:

<Location /status>
SetHandler server-status

98 | Chapter4: mod_perl Configuration

4~ ~4]e

é ,ch04.21778 Page 99 Thursday, November 18, 2004 12:35 PM

Order Deny,Allow
Deny from all
Allow from .example.com
</Location>
As you can see, the /status path does not exist on the filesystem, but that doesn’t
matter because the filesystem isn’t consulted for this request—it’s passed on directly
to mod_status.

Merging <Directory>, <Location>, and <Files> Sections

When configuring the server, it’s important to understand the order in which the
rules of each section are applied to requests. The order of merging is:

1. <Directory> (except for regular expressions) and .htaccess are processed simulta-
neously, with the directives in .htaccess overriding <Directory>.

2. <DirectoryMatch> and <Directory ~ > with regular expressions are processed
next.

3. <Files> and <FilesMatch> are processed simultaneously.

4. <Location> and <LocationMatch> are processed simultaneously.

Apart from <Directory>, each group is processed in the order in which it appears in
the configuration files. <Directory»s (group 1 above) are processed in order from the
shortest directory component to the longest (e.g., first / and only then /home/www).
If multiple <Directory> sections apply to the same directory, they are processed in
the configuration file order.

Sections inside <VirtualHost> sections are applied as if you were running several
independent servers. The directives inside one <VirtualHost> section do not interact
with directives in other <VirtualHost> sections. They are applied only after process-
ing any sections outside the virtual host definition. This allows virtual host configu-
rations to override the main server configuration.

If there is a conflict, sections found later in the configuration file override those that
come earlier.

Subgrouping of <Directory>, <Location>, and <Files>
Sections

Let’s say that you want all files to be handled the same way, except for a few of the
files in a specific directory and its subdirectories. For example, say you want all the
files in /home/httpd/docs to be processed as plain files, but any files ending with .html
and .txt to be processed by the content handler of the Apache::Compress module
(assuming that you are already running a mod_perl server):

<Directory /home/httpd/docs>
<FilesMatch "\.(html|txt)$">

Apache Configuration | 99

- ad

é ,ch04.21778 Page 100 Thursday, November 18, 2004 12:35 PM

PerlHandler +Apache::Compress
</FilesMatch>
</Directory>

The + before Apache: :Compress tells mod_perl to load the Apache: :Compress module
before using it, as we will see later.

Using <FilesMatchy, it is possible to embed sections inside other sections to create
subgroups that have their own distinct behavior. Alternatively, you could also use a
<Files> section inside an .htaccess file.

Note that you can’t put <Files> or <FilesMatch> sections inside a <Location> sec-
tion, but you can put them inside a <Directory> section.

Options Directive Merging

Normally, if multiple Options directives apply to a directory, the most specific one is
taken completely; the options are not merged.

However, if all the options on the Options directive are preceded by either a + or -
symbol, the options are merged. Any options preceded by + are added to the options
currently active, and any options preceded by - are removed.

For example, without any + or - symbols:

<Directory /home/httpd/docs>
Options Indexes FollowSymLinks

</Directory>

<Directory /home/httpd/docs/shtml>
Options Includes

</Directory>

Indexes and FollowSymlLinks will be set for /home/httpd/docs/, but only Includes will
be set for the /home/httpd/docs/shtml/ directory. However, if the second Options
directive uses the + and - symbols:
<Directory /home/httpd/docs>
Options Indexes FollowSymLinks
</Directory>
<Directory /home/httpd/docs/shtml>
Options +Includes -Indexes
</Directory>
then the options FollowSymLinks and Includes will be set for the /home/httpd/docs/
shtml/ directory.

MinSpareServers, MaxSpareServers, StartServers,
MaxClients, and MaxRequestsPerChild

MinSpareServers, MaxSpareServers, StartServers, and MaxClients are standard
Apache configuration directives that control the number of servers being launched at

100 | Chapter4: mod_perl Configuration

- ad

é ,ch04.21778 Page 101 Thursday, November 18, 2004 12:35 PM

server startup and kept alive during the server’s operation. When Apache starts, it
spawns StartServers child processes. Apache makes sure that at any given time there
will be at least MinSpareServers but no more than MaxSpareServers idle servers. How-
ever, the MinSpareServers rule is completely satisfied only if the total number of live
servers is no bigger than MaxClients.

MaxRequestsPerChild lets you specify the maximum number of requests to be served
by each child. When a process has served MaxRequestsPerChild requests, the parent
kills it and replaces it with a new one. There may also be other reasons why a child is
killed, so each child will not necessarily serve this many requests; however, each
child will not be allowed to serve more than this number of requests. This feature is
handy to gain more control of the server, and especially to avoid child processes
growing too big (RAM-wise) under mod_perl.

These five directives are very important for getting the best performance out of your
server. The process of tuning these variables is described in great detail in
Chapter 11.

mod_ perl Configuration

When you have tested that the Apache server works on your machine, it’s time to
configure the mod_perl part. Although some of the configuration directives are
already familiar to you, mod_perl introduces a few new ones.

It’s a good idea to keep all mod_perl-related configuration at the end of the configura-
tion file, after the native Apache configuration directives, thus avoiding any confusion.

To ease maintenance and to simplify multiple-server installations, the mod_perl-
enabled Apache server configuration system provides several alternative ways to keep
your configuration directives in separate places. The Include directive in httpd.conf
lets you include the contents of other files, just as if the information were all con-
tained in httpd.conf. This is a feature of Apache itself. For example, placing all mod_
perl-related configuration in a separate file named conf/mod_perl.conf can be done by
adding the following directive to httpd.conf:

Include conf/mod_perl.conf

If you want to include this configuration conditionally, depending on whether your
Apache has been compiled with mod_perl, you can use the IfModule directive :

<IfModule mod perl.c>

Include conf/mod_perl.conf

</IfModule>
mod_perl adds two more directives. <Perl> sections allow you to execute Perl code
from within any configuration file at server startup time. Additionally, any file con-
taining a Perl program can be executed at server startup simply by using the
PerlRequire or PerlModule directives, as we will show shortly.

mod_perl Configuration | 101

- ad

é ,ch04.21778 Page 102 Thursday, November 18, 2004 12:35 PM

Alias Configurations

For many reasons, a server can never allow access to its entire directory hierarchy.
Although there is really no indication of this given to the web browser, every path
given in a requested URI is therefore a virtual path; early in the processing of a
request, the virtual path given in the request must be translated to a path relative to
the filesystem root, so that Apache can determine what resource is really being
requested. This path can be considered to be a physical path, although it may not
physically exist.

For instance, in mod_perl systems, you may intend that the translated path does not
physically exist, because your module responds when it sees a request for this non-
existent path by sending a virtual document. It creates the document on the fly, spe-
cifically for that request, and the document then vanishes. Many of the documents
you see on the Web (for example, most documents that change their appearance
depending on what the browser asks for) do not physically exist. This is one of the
most important features of the Web, and one of the great powers of mod_perl is that
it allows you complete flexibility to create virtual documents.

The ScriptAlias and Alias directives provide a mapping of a URI to a filesystem
directory. The directive:

Alias /foo /home/httpd/foo

will map all requests starting with /foo to the files starting with /home/httpd/foo/. So
when Apache receives a request to http://www.example.com/foo/test.pl, the server will
map it to the file test.pl in the directory /home/httpd/fool.

Additionally, ScriptAlias assigns all the requests that match the specified URI (i.e.,
/cgi-bin) to be executed by mod_cgi.

ScriptAlias /cgi-bin /home/httpd/cgi-bin
is actually the same as:

Alias /cgi-bin /home/httpd/cgi-bin
<Location /cgi-bin>
SetHandler cgi-script
Options +ExecCGI
</Location>
where the SetHandler directive invokes mod_cgi. You shouldn’t use the ScriptAlias
directive unless you want the request to be processed under mod_cgi. Therefore,
when configuring mod_perl sections, use Alias instead.

Under mod_perl, the Alias directive will be followed by a section with at least two
directives. The first is the SetHandler/perl-script directive, which tells Apache to
invoke mod_perl to run the script. The second directive (for example, PerlHandler)
tells mod_perl which handler (Perl module) the script should be run under, and
hence for which phase of the request. Later in this chapter, we discuss the available

102 | Chapter4: mod_perl Configuration

- ad

é ,ch04.21778 Page 103 Thursday, November 18, 2004 12:35 PM

Perl*Handlers™ for the various request phases. A typical mod_perl configuration that
will execute the Perl scripts under the Apache: :Registry handler looks like this:
Alias /perl/ /home/httpd/perl/
<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry

Options +ExecCGI
</Location>

The last directive tells Apache to execute the file as a program, rather than return it
as plain text.

When you have decided which methods to use to run your scripts and where you
will keep them, you can add the configuration directive(s) to httpd.conf. They will
look like those below, but they will of course reflect the locations of your scripts in
your filesystem and the decisions you have made about how to run the scripts:
ScriptAlias /cgi-bin/ /home/httpd/cgi-bin/
Alias /perl/ /home/httpd/perl/
<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry

Options +ExecCGI
</Location>

In the examples above, all requests issued for URIs starting with /cgi-bin will be

served from the directory /home/httpd/cgi-bin/, and those starting with /perl will be
served from the directory /home/httpd/perl/.

Running scripts located in the same directory under different handlers

Sometimes you will want to map the same directory to a few different locations and
execute each file according to the way it was requested. For example, in the follow-
ing configuration:

Typical for plain cgi scripts:
ScriptAlias /cgi-bin/ /home/httpd/perl/

Typical for Apache::Registry scripts:
Alias /perl/ /home/httpd/perl/

Typical for Apache::PerlRun scripts:
Alias /cgi-perl/ /home/httpd/perl/

<Location /perl/>
SetHandler perl-script
PerlHandler Apache::Registry
Options +ExecCCI

</Location>

* When we say Perl*Handler, we mean the collection of all Perl handler directives (PerlHandler,
PerlAccessHandler, etc.).

mod_perl Configuration | 103

4~ ~4]e

é ,ch04.21778 Page 104 Thursday, November 18, 2004 12:35 PM

<Location /cgi-perl/>
SetHandler perl-script
PerlHandler Apache::PerlRun
Options +ExecCCI
</Location>

the following three URIs:

http://www.example.com/perl/test.pl

http://www.example.com/cgi-bin/test.pl

http://www.example.com/cgi-perl/test.pl
are all mapped to the same file, /home/httpd/perl/test.pl. If test.pl is invoked with the
URI prefix /perl, it will be executed under the Apache: :Registry handler. If the prefix
is /cgi-bin, it will be executed under mod_cgi, and if the prefix is /cgi-perl, it will be
executed under the Apache: :PerlRun handler.

This means that we can have all our CGI scripts located at the same place in the file-
system and call the script in any of three ways simply by changing one component of
the URI (cgi-bin|perl|cgi-perl).

This technique makes it easy to migrate your scripts to mod_perl. If your script does
not seem to work while running under mod_perl, in most cases you can easily call
the script in straight mod_cgi mode or under Apache: :PerlRun without making any
script changes. Simply change the URL you use to invoke it.

Although in the configuration above we have configured all three Aliases to point to
the same directory within our filesystem, you can of course have them point to differ-
ent directories if you prefer.

This should just be a migration strategy, though. In general, it’s a bad idea to run
scripts in plain mod_cgi mode from a mod_perl-enabled server—the extra resource
consumption is wasteful. It is better to run these on a plain Apache server.

<Location /perl> Sections

The <Location> section assigns a number of rules that the server follows when the
request’s URI matches the location. Just as it is a widely accepted convention to use
/cgi-bin for mod_cgi scripts, it is habitual to use /perl as the base URI of the Perl
scripts running under mod_perl. Let’s review the following very widely used
<Location> section:

Alias /perl/ /home/httpd/perl/
PerIModule Apache::Registry
<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry
Options +ExecCGI
Allow from all
PerlSendHeader On
</Location>

104 | Chapter4: mod_perl Configuration

4~ ~4]e

é ,ch04.21778 Page 105 Thursday, November 18, 2004 12:35 PM

This configuration causes all requests for URIs starting with /perl to be handled by the
mod_perl Apache module with the handler from the Apache: :Registry Perl module.

Remember the Alias from the previous section? We use the same Alias here. If you
use a <Location> that does not have the same Alias, the server will fail to locate the
script in the filesystem. You need the Alias setting only if the code that should be
executed is located in a file. Alias just provides the URI-to-filepath translation rule.

Sometimes there is no script to be executed. Instead, a method in a module is being
executed, as with /perl-status, the code for which is stored in an Apache module. In
such cases, you don’t need Alias settings for these <Location>s.

PerlModule is equivalent to Perl’s native use() function call. We use it to load the
Apache: :Registry module, later used as a handler in the <Location> section.

Now let’s go through the directives inside the <Location> section:

SetHandler perl-script
The SetHandler directive assigns the mod_perl Apache module to handle the
content generation phase.

PerlHandler Apache::Registry
The PerlHandler directive tells mod_perl to use the Apache::Registry Perl mod-
ule for the actual content generation.

Options +ExecCGI

Options +ExecCGI ordinarily tells Apache that it’s OK for the directory to con-
tain CGI scripts. In this case, the flag is required by Apache: :Registry to confirm
that you really know what you’re doing. Additionally, all scripts located in direc-
tories handled by Apache: :Registry must be executable, another check against
wayward non-script files getting left in the directory accidentally. If you omit this
option, the script either will be rendered as plain text or will trigger a Save As
dialog, depending on the client. *

Allow from all
The Allow directive is used to set access control based on the client’s domain or
IP adress. The from all setting allows any client to run the script.

PerlSendHeader On
The PerlSendHeader On line tells mod_perl to intercept anything that looks like a
header line (such as Content-Type: text/html) and automatically turn it into a
correctly formatted HTTP header the way mod_cgi does. This lets you write
scripts without bothering to call the request object’s send http header()
method, but it adds a small overhead because of the special handling.

* You can use Apache: :RegistryBB to skip this and a few other checks.

mod_perl Configuration | 105

- ad

é ,ch04.21778 Page 106 Thursday, November 18, 2004 12:35 PM

If you use CGI.pm’s header() function to generate HTTP headers, you do not
need to activate this directive, because CGI.pm detects that it’s running under
mod_perl and calls send_http_header() for you.

You will want to set PerlSendHeader Off for non-parsed headers (nph) scripts
and generate all the HTTP headers yourself. This is also true for mod_perl han-
dlers that send headers with the send_http_header() method, because having
PerlSendHeader On as a server-wide configuration option might be a perfor-
mance hit.

</Location>
</Location> closes the <Location> section definition.

Overriding <Location> Settings

Suppose you have:

<Location /foo>
SetHandler perl-script
PerlHandler Book::Module
</Location>
To remove a mod_perl handler setting from a location beneath a location where a han-
dler is set (e.g., /foo/bar), just reset the handler like this:
<Location /foo/bar>
SetHandler default-handler
</Location>
Now all requests starting with /foo/bar will be served by Apache’s default handler,
which serves the content directly.

PerlModule and PerlRequire

As we saw earlier, a module should be loaded before its handler can be used.
PerlModule and PerlRequire are the two mod_per!l directives that are used to load
modules and code. They are almost equivalent to Perl’s use() and require() func-
tions (respectively) and are called from the Apache configuration file. You can pass
one or more module names as arguments to PerlModule:

PerlModule Apache::DBI CGI DBD::Mysql

Generally, modules are preloaded from the startup script, which is usually called
startup.pl. This is a file containing Perl code that is executed through the PerlRequire
directive. For example:

PerlRequire /home/httpd/perl/lib/startup.pl

A PerlRequire filename can be absolute or relative to the ServerRoot or to a path in
@INC.

106 | Chapter4: mod_perl Configuration

%

é ,ch04.21778 Page 107 Thursday, November 18, 2004 12:35 PM

As with any file with Perl code that gets use()d or require()d, it must return a true
value. To ensure that this happens, don’t forget to add 1; at the end of startup.pl.

Perl*Handlers

As mentioned in Chapter 1, Apache specifies 11 phases of the request loop. In order
of processing, they are: Post-read-request, URI translation, header parsing, access con-
trol, authentication, authorization, MIME type checking, fixup, response (also known
as the content handling phase), logging, and finally cleanup. These are the stages of a
request where the Apache API allows a module to step in and do something. mod_
perl provides dedicated configuration directives for each of these stages:

PerlPostReadRequestHandler

PerlInitHandler

PerlTransHandler

PerlHeaderParserHandler

PerlAccessHandler

PerlAuthenHandler

PerlAuthzHandler

PerlTypeHandler

PerlFixupHandler

PerlHandler

PerllLogHandler

PerlCleanupHandler
These configuration directives usually are referred to as Perl*Handler directives. The
* in Perl*Handler is a placeholder to be replaced by something that identifies the
phase to be handled. For example, PerllLogHandler is the Perl handler that (fairly
obviously) handles the logging phase.

In addition, mod_perl adds a few more stages that happen outside the request loop:

PerlChildInitHandler
Allows your modules to initialize data structures during the startup of the child
process.

PerlChildExitHandler
Allows your modules to clean up during the child process shutdown.

PerlChildInitHandler and Per1ChildExitHandler might be used, for example, to
allocate and deallocate system resources, pre-open and close database connec-
tions, etc. They do not refer to parts of the request loop.
PerlRestartHandler
Allows you to specify a routine that is called when the server is restarted. Since
Apache always restarts itself immediately after it starts, this is a good phase for
doing various initializations just before the child processes are spawned.
PerlDispatchHandler
Can be used to take over the process of loading and executing handler code.
Instead of processing the Perl*Handler directives directly, mod_perl will invoke

mod_perl Configuration | 107

- ad

é ,ch04.21778 Page 108 Thursday, November 18, 2004 12:35 PM

the routine pointed to by PerlDispatchHandler and pass it the Apache request
object and a second argument indicating the handler that would ordinarily be
invoked to process this phase. So for example, you can write a
PerlDispatchHandler handler with a logic that will allow only specific code to be
executed.

Since most mod_perl applications need to handle only the response phase, in the
default compilation, most of the Perl*Handlers are disabled. During the perl Make-
file.PL mod_perl build stage, you must specify whether or not you will want to han-
dle parts of the request loop other than the usual content generation phase. If this is
the case, you need to specify which phases, or build mod_perl with the option
EVERYTHING=1, which enables them all. All the build options are covered in detail in
Chapter 3.

Note that it is mod_perl that recognizes these directives, not Apache. They are mod_
perl directives, and an ordinary Apache server will not recognize them. If you get
error messages about these directives being “perhaps mis-spelled,” it is a sure sign
that the appropriate part of mod_perl (or the entire mod_perl module!) is missing
from your server.

All <Location>, <Directory>, and <Files> sections contain a physical path specifica-
tion. Like PerlChildInitHandler and PerlChildExitHandler, the directives
PerlPostReadRequestHandler and PerlTransHandler cannot be used in these sections,
nor in .htaccess files, because the path translation isn’t completed and a physical path
isn’t known until the end of the translation (PerlTransHandler) phase.

PerlInitHandler is more of an alias; its behavior changes depending on where it is
used. In any case, it is the first handler to be invoked when serving a request. If
found outside any <Location>, <Directory>, or <Files> section, it is an alias for
PerlPostReadRequestHandler. When inside any such section, it is an alias for
PerlHeaderParserHandler.

Starting with the header parsing phase, the requested URI has been mapped to a
physical server pathname, and thus PerlHeaderParserHandler can be used to match a
<Location>, <Directory>, or <Files> configuration section, or to process an .htaccess
file if such a file exists in the specified directory in the translated path.

PerlDispatchHandler, PerlCleanupHandler, and PerlRestartHandler do not corre-
spond to parts of the Apache API, but allow you to fine-tune the mod_perl API. They
are specified outside configuration sections.

The Apache documentation and the book Writing Apache Modules with Perl and C
(O’Reilly) provide in-depth information on the request phases.

108 | Chapter4: mod_perl Configuration

- ad

é ,ch04.21778 Page 109 Thursday, November 18, 2004 12:35 PM

The handler() Subroutine

By default, the mod_perl API expects a subroutine named handler() to handle the
request in the registered Perl*Handler module. Thus, if your module implements this
subroutine, you can register the handler with mod_perl by just specifying the mod-
ule name. For example, to set the PerlHandler to Apache::Foo: :handler, the follow-
ing setting would be sufficient:

PerlHandler Apache::Foo

mod_perl will load the specified module for you when it is first used. Please note that
this approach will not preload the module at startup. To make sure it gets pre-
loaded, you have three options:

* You can explicitly preload it with the PerlModule directive:
PerlModule Apache::Foo

* You can preload it in the startup file:
use Apache::Foo ();

* You can use a nice shortcut provided by the Perl*Handler syntax:
PerlHandler +Apache::Foo

Note the leading + character. This directive is equivalent to:

PerIModule Apache::Foo

<Location ..»

F"él.rlHandler Apache: :Foo
</Location>
If you decide to give the handler routine a name other than handler() (for example,
my_handler()), you must preload the module and explicitly give the name of the han-
dler subroutine:

PerIModule Apache::Foo
<Location ..»

PerlHandler Apache::Foo::my handler
</Location>

This configuration will preload the module at server startup.

If a module needs to know which handler is currently being run, it can find out with
the current callback() method. This method is most useful to PerlDispatchHandlers
that take action for certain phases only.

if ($r->current callback eq "PerllLogHandler") {
$r->warn("Logging request");
}

mod_perl Configuration | 109

é ,ch04.21778 Page 110 Thursday, November 18, 2004 12:35 PM

Investigating the Request Phases

Imagine a complex server setup in which many different Perl and non-Perl handlers
participate in the request processing, and one or more of these handlers misbehaves.
A simple example is one where one of the handlers alters the request record, which
breaks the functionality of other handlers. Or maybe a handler invoked first for any
given phase of the process returns an unexpected OK status, thus preventing other
handlers from doing their job. You can’t just add debug statements to trace the
offender—there are too many handlers involved.

The simplest solution is to get a trace of all registered handlers for each phase, stat-
ing whether they were invoked and what their return statuses were. Once such a
trace is available, it’s much easier to look only at the players that actually partici-
pated, thus narrowing the search path down a potentially misbehaving module.

The Apache: :ShowRequest module shows the phases the request goes through, dis-
playing module participation and response codes for each phase. The content
response phase is not run, but possible modules are listed as defined. To configure it,
just add this snippet to httpd.conf:
<Location /showrequest>
SetHandler perl-script
PerlHandler +Apache::ShowRequest
</Location>
To see what happens when you access some URI, add the URI to /showrequest.
Apache: : ShowRequest uses PATH_INFO to obtain the URI that should be executed. So, to
run /index.html with Apache: : ShowRequest, issue a request for /showrequest/index.html.
For /perlftest.pl, issue a request for /showrequest/perl/test.pl.

This module produces rather lengthy output, so we will show only one section from
the report generated while requesting /showrequest/index.html:

Running request for /index.html
Request phase: post read request

[snip]
Request phase: translate handler

mod perl ..ot DECLINED
mod_setenvif undef
mod authoeevviiiinit, undef
MOd_ACCESS vuvuuvevvinnnnnnns undef
mod_aliasoiiiiini., DECLINED
mod userdir DECLINED
mod_actionsiiiiiinn undef
mod_imap ...iiiiiiiiiiiinn. undef
mod asis ...oiiiiiiiiiiiiiinn undef
mod cgi ovviiiniiiiiiiiiit undef
mod diroiiiiiin.t, undef
mod_autoindex undef
mod_includeoiiiien undef
mod_infoooiiiiiiiiit, undef

110 | Chapter4: mod_perl Configuration

é ,ch04.21778 Page 111 Thursday, November 18, 2004 12:35 PM

mod_statusooiaan, undef

mod_negotiation undef

mod mimeoiiiiiiiiii., undef

mod_log config undef

MOd €NV wevviinnneeninnnnnens undef

http core «.ovvvviiiiiiie, 0K
Request phase: header parser

[snip]
Request phase: access checker

[snip]
Request phase: check user id

[snip]
Request phase: auth_checker

[snip]
Request phase: type checker

[snip]
Request phase: fixer upper

[snip]
Request phase: response handler (type: text/html)
mod_actionsc.iiiiiiinn defined
mod_includecouu.n defined
http core ...t defined
Request phase: logger
[snip]
For each stage, we get a report of what modules could participate in the processing
and whether they took any action. As you can see, the content response phase is not
run, but possible modules are listed as defined. If we run a mod_perl script, the
response phase looks like:

Request phase: response handler (type: perl-script)
mod perliiiiiiiiiiiiiinn defined

Stacked Handlers

With the mod_perl stacked handlers mechanism, it is possible for more than one
Perl*Handler to be defined and executed during any stage of a request.

Perl*Handler directives can define any number of subroutines. For example:
PerlTransHandler Foo::foo Bar::bar

Foo::foo() will be executed first and Bar::bar() second. As always, if the subrou-
tine’s name is handler(), you can omit it.

With the Apache->push_handlers() method, callbacks (handlers) can be added to a
stack at runtime by mod_perl modules.

Apache->push_handlers() takes the callback handler name as its first argument and a
subroutine name or reference as its second. For example, let’s add two handlers
called my_logger1() and my logger2() to be executed during the logging phase:

use Apache::Constants qw(:common);
sub my loggerl {

mod_perl Configuration | 111

4~ ~4]e

é ,ch04.21778 Page 112 Thursday, November 18, 2004 12:35 PM

#some code here
return OK;

sub my_logger2 {
#some other code here
return OK;

}
Apache->push_handlers("PerllLogHandler", \&my logger1);
Apache->push_handlers("PerlLogHandler", \&my logger2);

You can also pass a reference to an anonymous subroutine. For example:

use Apache::Constants qw(:common);

Apache->push_handlers("PerlLogHandler", sub {
print STDERR "__ANON__ called\n";
return OK;

1

After each request, this stack is erased.

All handlers will be called in turn, unless a handler returns a status other than 0K or
DECLINED.

To enable this feature, build mod_perl with:

panic% perl Makefile.PL PERL STACKED HANDLERS=1 [...]
or:

panic% perl Makefile.PL EVERYTHING=1 [...]

To test whether the version of mod_perl you’re running can stack handlers, use the
Apache->can_stack_handlers method. This method will return a true value if mod_
perl was configured with PERL_STACKED HANDLERS=1, and a false value otherwise.

Let’s look at a few real-world examples where this method is used:

* The widely used CGI.pm module maintains a global object for its plain function
interface. Since the object is global, under mod_perl it does not go out of scope
when the request is completed, and the DESTROY method is never called. There-
fore, CGI->new arranges to call the following code if it detects that the module is
used in the mod_perl environment:

Apache->push_handlers("PerlCleanupHandler”, \&CGI:: reset globals);

This function is called during the final stage of a request, resetting CGI.pm’s glo-
bals before the next request arrives.

* Apache::DCELogin establishes a DCE login context that must exist for the life-
time of a request, so the DCE: :Login object is stored in a global variable. Without
stacked handlers, users must set the following directive in the configuration file
to destroy the context:

PerlCleanupHandler Apache::DCELogin::purge

112 | Chapter4: mod_perl Configuration

4~ ~4]e

é ,ch04.21778 Page 113 Thursday, November 18, 2004 12:35 PM

This is ugly. With stacked handlers, Apache::DCELogin::handler can call from
within the code:

Apache->push_handlers("PerlCleanupHandler", \&purge);

Apache: :DBI, the persistent database connection module, can pre-open the con-

nection when the child process starts via its connect_on_init() function. This

function uses push_handlers() to add a PerlChildInitHandler:
Apache->push_handlers(PerlChildInitHandler => \&childinit);

Now when the new process gets the first request, it already has the database con-
nection open.

Apache: :DBI also uses push_handlers() to have PerlCleanupHandler handle roll-
backs if its AutoCommit attribute is turned off.

PerlTransHandlers (e.g., Apache::MsqlProxy) may decide, based on the URI or
some arbitrary condition, whether or not to handle a request. Without stacked
handlers, users must configure it themselves.

PerlTransHandler Apache::MsqlProxy::translate

PerlHandler Apache: :MsqlProxy
PerlHandler is never actually invoked unless translate() sees that the request is
a proxy request ($r->proxyreq). If it is a proxy request, translate() sets $r->
handler("perl-script"), and only then will PerlHandler handle the request.
Now users do not have to specify PerlHandler Apache::MsqlProxy, because the
translate() function can set it with push_handlers().

Now let’s write our own example using stacked handlers. Imagine that you want to
piece together a document that includes footers, headers, etc. without using SSI. The
following example shows how to implement it. First we prepare the code as shown
in Example 4-1.

Example 4-1. Book/Compose.pm

package Book: :Compose;

use

sub

sub

sub

Apache: :Constants qw(0K);

header {

my $r = shift;
$r->send_http_header("text/plain");
$r->print("header text\n");

return OK;

body {
shift->print("body text\n");
return OK;

footer {
shift->print("footer text\n");
return OK;

mod_perl Configuration | 113

é ,ch04.21778 Page 114 Thursday, November 18, 2004 12:35 PM

The code defines the package Book: :Compose, imports the 0K constant, and defines
three subroutines: header () to send the header, body() to create and send the actual
content, and finally footer () to add a standard footer to the page. At the end of each
handler we return 0K, so the next handler, if any, will be executed.

To enable the construction of the page, we now supply the following configuration:

PerlModule Book::Compose
<Location /compose>

SetHandler perl-script

PerlHandler Book::Compose::header Book::Compose::body Book::Compose::footer
</Location>

We preload the Book: :Compose module and construct the PerlHandler directive by
listing the handlers in the order in which they should be invoked.”

Finally, let’s look at the technique that allows parsing the output of another
PerlHandler. For example, suppose your module generates HTML responses, but
you want the same content to be delivered in plain text at a different location. This is
a little trickier, but consider the following:

<Location /perl>
SetHandler perl-script
PerlHandler Book::HTMLContentGenerator
</Location>
<Location /text>
SetHandler perl-script
PerlHandler Book::HTML2TextConvertor Book::HTMLContentGenerator
</Location>

Notice that Book::HTML2TextConvertor is listed first. While its handler() will be
called first, the actual code that does the conversion will run last, as we will explain
in a moment. Now let’s look at the sample code in Example 4-2.

Example 4-2. Book/HTML2TextConvertor.pm
package Book::HTML2TextConvertor;

sub handler {

my $r = shift;

untie *STDOUT;

tie *STDOUT => _ PACKAGE__, $r;
}

sub TIEHANDLE {
my($class, $1r) = @_;
bless { r => $r}, $class;

* It may not seem to make sense to use this example, as it would be much simpler to write a single handler to
call all three subroutines. But what if the three reside in different modules that are maintained by different
authors?

114 | Chapter4: mod_perl Configuration

4~ ~4]e

é ,ch04.21778 Page 115 Thursday, November 18, 2004 12:35 PM

Example 4-2. Book/HTML2TextConvertor.pm (continued)

sub PRINT {
my $self = shift;
for (0_) {
copy it so no 'read-only value modification' will happen
my $line = § ;
$line =~ s/<[*>]*>//g; # strip the html <tags>
$self->{r}->print($line);

}
1;

It untie()s STDOUT and re-tie()s it to its own package, so that content printed to
STDOUT by the previous content generator in the pipe goes through this module. In
the PRINT() method, we attempt to strip the HTML tags. Of course, this is only an
example; correct HTML stripping actually requires more than one line of code and a
quite complex regular expression, but you get the idea.

Perl Method Handlers

If mod_perl was built with:

panic% perl Makefile.PL PERL METHOD HANDLERS=1 [...]
or:

panic% perl Makefile.PL EVERYTHING=1 [...]

it’s possible to write method handlers in addition to function handlers. This is useful
when you want to write code that takes advantage of inheritance. To make the han-
dler act as a method under mod_perl, use the $$ function prototype in the handler
definition. When mod_perl sees that the handler function is prototyped with $$, it’ll
pass two arguments to it: the calling object or a class, depending on how it was
called, and the Apache request object. So you can write the handler as:

sub handler ($$) {
my($self, $r) = @_;
...

}

The configuration is almost as usual. Just use the class name if the default method
name handler() is used:

PerlHandler Book::SubClass

However, if you choose to use a different method name, the object-oriented nota-
tion should be used:

PerlHandler Book::SubClass->my handler

The my _handler() method will then be called as a class (static) method.

mod_perl Configuration | 115

- ad

é ,ch04.21778 Page 116 Thursday, November 18, 2004 12:35 PM

Also, you can use objects created at startup to call methods. For example:

<Perl>

use Book::SubClass;

$Book: :Global: :object = Book::SubClass->new();
</Perl>
PerlHandler $Book::Global::object->my handler

In this example, the my_handler() method will be called as an instance method on
the global object $Book: :Global.

PerlFreshRestart
To reload PerlRequire, PerlModule, and other use()d modules, and to flush the
Apache: :Registry cache on server restart, add this directive to httpd.conf:

PerlFreshRestart On

You should be careful using this setting. It used to cause trouble in older versions of
mod_perl, and some people still report problems using it. If you are not sure if it’s
working properly, a full stop and restart of the server will suffice.

Starting with mod_perl Version 1.22, PerlFreshRestart is ignored when mod_perl is
compiled as a DSO. But it almost doesn’t matter, as mod_perl as a DSO will do a full
tear-down (calling perl destruct()).”

PerlSetEnv and PerlPassEnv

In addition to Apache’s SetEnv and PassEnv directives, respectively setting and pass-
ing shell environment variables, mod_perl provides its own directives: PerlSetEnv
and PerlPassEnv.

If you want to globally set an environment variable for the server, you can use the
PerlSetEnv directive. For example, to configure the mod_perl tracing mechanism (as
discussed in Chapter 21), add this to httpd.conf:

PerlSetEnv MOD PERL TRACE all
This will enable full mod_perl tracing.

Normally, PATH is the only shell environment variable available under mod_perl. If
you need to rely on other environment variables, you can have mod_perl make those
available for your code with Per1PassEnv.

For example, to forward the environment variable HOME (which is usually set to the
home of the user who has invoked the server in httpd.conf), add:

PerlPassEnv HOME

* The parent process would leak several MB on each restart without calling perl_destruct().

116 | Chapter4: mod_perl Configuration

- ad

é ,ch04.21778 Page 117 Thursday, November 18, 2004 12:35 PM

Once you set the environment variable, it can be accessed via the ENV hash in Perl (e.g.,
$ENV{HOME}).

PerlSetEnv and PerlPassEnv work just like the Apache equivalents, except that they
take effect in the first phase of the Apache request cycle. The standard Apache direc-
tives SetEnv and PassEnv don’t affect the environment until the fixup phase, which
happens much later, just before content generation. This works for CGI scripts,
which aren’t run before then, but if you need to set some environment variables and
access them in a handler invoked before the response stage, you should use the mod_
perl directives. For example, handlers that want to use an Oracle relational database
during the authentication phase might need to set the following environment vari-
able (among others) in httpd.conf:

PerlSetEnv ORACLE HOME /share/lib/oracle/

Note that PerlSetEnv will override the environment variables that were available ear-
lier. For example, we have mentioned that PATH is always supplied by Apache itself.
But if you explicitly set:

PerlSetEnv PATH /tmp
this setting will be used instead of the one set in the shell program.

As with other configuration scoping rules, if you place PerlSetEnv or PerlPassEnv in
the scope of the configuration file, it will apply everywhere (unless overridden). If
placed into a <Location> section, or another section in the same group, these direc-
tives will influence only the handlers in that section.

PerlSetVar and PerlAddVar

PerlSetVar is another directive introduced by mod_perl. It is very similar to
PerlSetEnv, but the key/value pairs are stored in an Apache::Table object and
retrieved using the dir_config() method.

There are two ways to use PerlSetVar. The first is the usual way, as a configuration
directive. For example:

PerlSetVar foo bar
The other way is via Perl code in <Perl> sections:

<Perl>
push @{ $Location{"/"}->{PerlSetvar} }, [foo => 'bar'];
</Perl>

Now we can retrieve the value of foo using the dir config() method:
$foo = $r->dir config('foo');

Note that you cannot use the following code in <Perls sections, which we discuss
later in this chapter:

<Perl>
my %foo = (a => 0, b => 1);

mod_perl Configuration | 117

- ad

é ,ch04.21778 Page 118 Thursday, November 18, 2004 12:35 PM

push @{ $Location{"/"}->{PerlSetvar} }, [foo => \%foo];
</Perl>

All values are passed to Apache::Table as strings, so you will get a stringified refer-
ence to a hash as a value (such as "HASH(0x87a5108)"). This cannot be turned back
into the original hash upon retrieval.

However, you can use the PerlAddvVar directive to push more values into the vari-
able, emulating arrays. For example:

PerlSetVar foo bar
PerlAddvVar foo bari
PerlAddVar foo bar2

or the equivalent:

PerlAddvVar foo bar
PerlAddvVar foo bari
PerlAddvar foo bar2

To retrieve the values, use the $r->dir config->get() method:
my @foo = $r->dir config->get('foo');

Obviously, you can always turn an array into a hash with Perl, so you can use this
directive to pass hashes as well. Consider this example:

PerlAddvar foo key1
PerlAddvVar foo valuel
PerlAddVar foo key2
PerlAddVar foo value2

You can then retrieve the hash in this way:
my %foo = $r->dir config->get('foo');

Make sure that you use an even number of elements if you store the retrieved values
in a hash.

Passing a list or a hash via the PerlAddvar directive in a <Perl> section should be
coded in this way:

<Perl>
my %foo = (a => 0, b => 1);
for (%foo) {
push @{ $Location{"/"}->{PerlAddvar} }, [foo => $ 1;

</Perl>
Now you get back the hash as before:
my %foo = $r->dir_config->get('foo');

This might not seem very practical; if you have more complex needs, think about
having dedicated configuration files.

Customized configuration directives can also be created for the specific needs of a
Perl module. To learn how to create these, please refer to Chapter 8 of Writing
Apache Modules with Perl and C (O’Reilly), which covers this topic in great detail.

118 | Chapter4: mod_perl Configuration

4~ ~4]e

é ,ch04.21778 Page 119 Thursday, November 18, 2004 12:35 PM

PerlSetupEnv

Certain Perl modules used in CGI code (such as CGI.pm) rely on a number of environ-
ment variables that are normally set by mod_cgi. For example, many modules
depend on QUERY_STRING, SCRIPT FILENAME, and REQUEST URI. When the PerlSetupEnv
directive is turned on, mod_perl provides these environment variables in the same
fashion that mod_cgi does. This directive is On by default, which means that all the
environment variables you are accustomed to being available under mod_cgi are also
available under mod_perl.

The process of setting these environment variables adds overhead for each request,
whether the variables are needed or not. If you don’t use modules that rely on this
behavior, you can turn it off in the general configuration and then turn it on in sec-
tions that need it (such as legacy CGI scripts):
PerlSetupEnv Off
<Location /perl-run>
SetHandler perl-script
PerlHandler Apache::PerlRun
Options +ExecCCI
PerlSetupEnv On
</Location>
You can use mod_perl methods to access the information provided by these environ-
ment variables (e.g., $r->path_info instead of $ENV{PATH_INFO}). For more details, see
the explanation in Chapter 11.

PerlWarn and PerITaintCheck

PerlWarn and PerlTaintCheck have two possible values, On and Off. PerlWarn turns
warnings on and off globally to the whole server, and PerlTaintCheck controls
whether the server is running with taint checking or not. These two variables are also
explained in Chapter 6.

The Startup File

At server startup, before child processes are spawned, you can do much more than
just preload modules. You might want to register code that will initialize a database
connection for each child when it is forked, tie read-only DBM files, fill in shared
caches, etc.

The startup.pl file is an ideal place to put code that should be executed when the
server starts. Once you have prepared the code, load it in httpd.conf before other
mod_perl configuration directives with the PerlRequire directive:

PerlRequire /home/httpd/perl/lib/startup.pl

The StartupFile | 119

- ad

é ,ch04.21778 Page 120 Thursday, November 18, 2004 12:35 PM

Be careful with the startup file. Everything run at server initialization is run with root
privileges if you start the server as root (which you have to do unless you choose to
run the server on an unprivileged port, numbered 1024 or higher). This means that
anyone who has write access to a script or module that is loaded by PerlModule,
PerlRequire, or <Perl> sections effectively has root access to the system.

A Sample Startup File

Let’s look at a real-world startup file. The elements of the file are shown here, fol-
lowed by their descriptions.

use strict;

This pragma is worth using in every script longer than half a dozen lines. It will save
a lot of time and debugging later.

use 1lib qw(/home/httpd/1ib /home/httpd/extra-1ib);

This permanently adds extra directories to @INC, something that’s possible only dur-
ing server startup. At the end of each request’s processing, mod_perl resets @INC to
the value it had after the server startup. Alternatively, you can use the PERL5LIB envi-
ronment variable to add extra directories to @INC.

$ENV{MOD_PERL} or die "not running under mod perl!";

This is a sanity check. If mod_perl wasn’t properly built, the server startup is
aborted.

use Apache::Registry ();

use LWP::UserAgent ();

use Apache::DBI ();

use DBI ();
Preload the modules that get used by Perl code serving requests. Unless you need the
symbols (variables and subroutines) exported by preloaded modules to accomplish
something within the startup file, don’t import them—it’s just a waste of startup
time and memory. Instead, use the empty import list () to tell the import() function
not to import anything.

use Carp ();

$SIG{__WARN_ _} = \&Carp::cluck;
This is a useful snippet to enable extended warnings logged in the error_log file. In
addition to basic warnings, a trace of calls is added. This makes tracking potential
problems a much easier task, since you know who called what.

The only drawback of this method is that it globally overrides the default warning
handler behavior—thus, in some places it might be desirable to change the settings
locally (for example, with local $"W=0, or no warnings under Perl 5.6.0 and higher).
Usually warnings are turned off on production machines to prevent unnecessary

120 | Chapter4: mod_perl Configuration

- ad

é ,ch04.21778 Page 121 Thursday, November 18, 2004 12:35 PM

clogging of the error_log file if your code is not very clean. Hence, this method is
mostly useful in a development environment.

use CGI ();

CGI->compile(':all');
Some modules, such as CGI.pm, create their subroutines at runtime via AUTOLOAD to
improve their loading time. This helps when the module includes many subroutines
but only a few are actually used. (Also refer to the AutoSplit manpage.) Since the
module is loaded only once with mod_perl, it might be a good idea to precompile all
or some of its methods at server startup. This avoids the overhead of compilation at
runtime. It also helps share more compiled code between child processes.

CGI.pm’s compile() method performs this task. Note that compile() is specific to
CGI.pm; other modules that implement this feature may use another name for the
compilation method.

As with all modules we preload in the startup file, we don’t import symbols from
them because they will be lost when they go out of the file’s scope.

The following code snippet makes sure that when the child process is spawned, a
connection to the database is opened automatically, avoiding this performance hit on
the first request:
Apache: :DBI->connect on init
("DBI:mysql:database=test;host=localhost",
"user", "password", {
PrintError => 1, # warn() on errors
RaiseError => 0, # don't die on error
AutoCommit => 1, # commit executes immediately
}
)

We discuss this method in detail in Chapter 20.
The file ends with 1; so it can be successfully loaded by Perl.

The entire startup.pl file is shown in Example 4-3.

Example 4-3. startup.pl

use strict;

use 1lib qw(/home/httpd/1ib /home/httpd/extra-1ib);
$ENV{MOD_PERL} or die "not running under mod perl!";

use Apache::Registry ();
use LWP::UserAgent ();
use Apache::DBI ();

use DBI ();

use Carp ();
$SIG{__WARN__} = \&Carp::cluck;

The StartupFile | 121

é ,ch04.21778 Page 122 Thursday, November 18, 2004 12:35 PM

Example 4-3. startup.pl (continued)

use CGI ();
CGI->compile(':all');

Apache: :DBI->connect on init

("DBI:mysql:database=test;host=localhost",

"user", "password", {
PrintError => 1, # warn() on errors
RaiseError => 0, # don't die on error
AutoCommit => 1, # commit executes immediately
}

)s

1;

Syntax Validation

If the startup file doesn’t include any modules that require the mod_per] runtime
environment during their loading, you can validate its syntax with:

panic% perl -cw /home/httpd/perl/lib/startup.pl

The -¢ switch tells Perl to validate only the file’s syntax, and the -w switch enables
warnings.

Apache::DBI is an example of a module that cannot be loaded outside of the mod_
perl environment. If you try to load it, you will get the following error message:
panic% perl -MApache::DBI -c -e 1
Can't locate object method "module" via package "Apache"
(perhaps you forgot to load "Apache"?) at
/usr/lib/perls/site_perl/5.6.1/Apache/DBI.pm line 202.

Compilation failed in require.
BEGIN failed--compilation aborted.

However, Apache: :DBI will work perfectly once loaded from within mod_perl.

What Modules Should Be Added to the Startup File

Every module loaded at server startup will be shared among the server children, sav-
ing a lot of RAM on your machine. Usually, we put most of the code we develop into
modules and preload them.

You can even preload CGI scripts with Apache::Registryloader, as explained in
Chapter 10.

The Confusion with use() in the Server Startup File

Some people wonder why they need to duplicate use Modulename in the startup file
and in the script itself. The confusion arises due to misunderstanding use(). Let’s
take the POSIX module as an example. When you write:

use POSIX qw(setsid);

122 | Chapter4: mod_perl Configuration

- ad

é ,ch04.21778 Page 123 Thursday, November 18, 2004 12:35 PM

use() internally performs two operations:

BEGIN {
require POSIX;
POSIX->import(qw(setsid));
}

The first operation loads and compiles the module. The second calls the module’s
import() method and specifies to import the symbol setsid into the caller’s
namespace. The BEGIN block makes sure that the code is executed as soon as possi-
ble, before the rest of the code is even parsed. POSIX, like many other modules, speci-
fies a default export list. This is an especially extensive list, so when you call:

use POSIX;
about 500 KB worth of symbols gets imported.

Usually, we don’t need POSIX or its symbols in the startup file; all we want is to pre-
load it. Therefore, we use an empty list as an argument for use():

use POSIX ();
so the POSIX: :import() method won’t be even called.

When we want to use the POSIX module in the code, we use() it again, but this time
no loading overhead occurs because the module has been loaded already. If we want
to import something from the module, we supply the list of symbols to load:

use POSIX quw(:flock h);
This example loads constants used with the flock() function.

Technically, you aren’t required to supply the use() statement in your handler code if
the module has already been loaded during server startup or elsewhere. When writing
your code, however, don’t assume that the module code has been preloaded. Some-
day in the future, you or someone else will revisit this code and will not understand
how it is possible to use a module’s methods without first loading the module itself.

Please refer to the Exporter and perlmod manpages, and to the section on use() in
the perlfunc manpage for more information about import ().

Remember that you can always use require() to preload the files at server startup if
you don’t add ('), because:

require Data::Dumper;
is the same as:
use Data::Dumper ();

except that it’s not executed at compile-time.

Apache Configuration in Perl

With <Perls ... </Perls sections, you can configure your server entirely in Perl. It’s
probably not worth it if you have simple configuration files, but if you run many

Apache Configurationin Perl | 123

- ad

é ,ch04.21778 Page 124 Thursday, November 18, 2004 12:35 PM

virtual hosts or have complicated setups for any other reason, <Perl> sections
become very handy. With <Perl> sections you can easily create the configuration on
the fly, thus reducing duplication and easing maintenance.’

To enable <Perl> sections, build mod_perl with:
panic% perl Makefile.PL PERL SECTIONS=1 [...]
or with EVERYTHING=1.

Constructing <Perl> Sections

<Perl> sections can contain any and as much Perl code as you wish. <Perl> sections
are compiled into a special package called Apache::ReadConfig. mod_perl looks
through the symbol table for Apache: :ReadConfig for Perl variables and structures to
grind through the Apache core configuration gears. Most of the configuration direc-
tives can be represented as scalars ($scalar) or arrays (@array). A few directives
become hashes.

How do you know which Perl global variables to use? Just take the Apache directive
name and prepend either $, @, or % (as shown in the following examples), depending
on what the directive accepts. If you misspell the directive, it is silently ignored, so
it’s a good idea to check your settings.

Since Apache directives are case-insensitive, their Perl equivalents are case-insensi-
tive as well. The following statements are equivalent:

$User = 'stas';
$user = 'stas'; # the same

Let’s look at all possible cases we might encounter while configuring Apache in Perl:

* Directives that accept zero or one argument are represented as scalars. For exam-
ple, CacheNegotiatedDocs is a directive with no arguments. In Perl, we just assign
it an empty string:

<Perl>

$CacheNegotiatedDocs = '';

</Perl>
Directives that accept a single value are simple to handle. For example, to config-
ure Apache so that child processes run as user httpd and group httpd, use:

User = httpd

Group = httpd
What if we don’t want user and group definitions to be hardcoded? Instead,
what if we want to define them on the fly using the user and group with which
the server is started? This is easily done with <Perl> sections:

* You may also find that mod_macro is useful to simplify the configuration if you have to insert many repeti-
tive configuration snippets.

124 | Chapter4: mod_perl Configuration

4~ ~4]e

é ,ch04.21778 Page 125 Thursday, November 18, 2004 12:35 PM

<Perl>
$User = getpwuid($>) || $>;
$Group = getgrgid($)) || $);
</Perl>

We use the power of the Perl API to retrieve the data on the fly. $User is set to
the name of the effective user ID with which the server was started or, if the
name is not defined, the numeric user ID. Similarly, $Group is set to either the
symbolic value of the effective group ID or the numeric group ID.

Notice that we’ve just taken the Apache directives and prepended a $, as they
represent scalars.

* Directives that accept more than one argument are represented as arrays or as a
space-delimited string. For example, this directive:
PerlModule Mail::Send Devel::Peek
becomes:

<Perl>
@PerIModule = gw(Mail::Send Devel::Peek);
</Perl>
@PerlModule is an array variable, and we assign it a list of modules. Alternatively,
we can use the scalar notation and pass all the arguments as a space-delimited
string:
<Perl>
$PerlModule = "Mail::Send Devel::Peek";
</Perl>
* Directives that can be repeated more than once with different values are repre-
sented as arrays of arrays. For example, this configuration:
AddEncoding x-compress Z
AddEncoding x-gzip gz tgz
becomes:
<Perl>
@AddEncoding = (
['x-compress' => gqw(Z)],
['x-gzip® => aw(gz tgz)],
);
</Perl>
* Directives that implement a container block, with beginning and ending delimit-
ers such as <Location> ... </Location>, are represented as Perl hashes. In these
hashes, the keys are the arguments of the opening directive, and the values are
the contents of the block. For example:
Alias /private /home/httpd/docs/private

<Location /private>
DirectoryIndex index.html index.htm

AuthType Basic
AuthName "Private Area"
AuthUserFile /home/httpd/docs/private/.htpasswd
Require valid-user
</Location>

Apache Configurationin Perl | 125

4~ ~4]e

é ,ch04.21778 Page 126 Thursday, November 18, 2004 12:35 PM

These settings tell Apache that URIs starting with /private are mapped to the
physical directory /home/httpd/docs/private/ and will be processed according to
the following rules:

— The users are to be authenticated using basic authentication.
— PrivateArea will be used as the title of the pop-up box displaying the login
and password entry form.

— Only valid users listed in the password file /home/httpd/docs/private/. htpasswd
and who provide a valid password may access the resources under /private/.

— If the filename is not provided, Apache will attempt to respond with the
index.html or index.htm directory index file, if found.

Now let’s see the equivalent <Perls section:

<Perl>
push @Alias, qw(/private /home/httpd/docs/private);
$Location{"/private"} = {
DirectoryIndex => [qw(index.html index.htm)],

AuthType => 'Basic',
AuthName => '"Private Area"',
AuthUserFile => '/home/httpd/docs/private/.htpasswd’,
Require => 'valid-user',
};
</Perl>

First, we convert the Alias directive into an array @Alias. Instead of assigning,
however, we push the values at the end. We do this because it’s possible that we
have assigned values earlier, and we don’t want to overwrite them. Alterna-
tively, you may want to push references to lists, like this:

push @Alias, [qw(/private /home/httpd/docs/private)];
Second, we convert the Location block, using /private as a key to the hash
%Location and the rest of the block as its value. When the structures are nested,
the normal Perl rules apply—that is, arrays and hashes turn into references.
Therefore, DirectoryIndex points to an array reference. As shown earlier, we can
always replace this array with a space-delimited string:

$Location{"/private"} = {
DirectoryIndex => 'index.html index.htm',

15
Also notice how we specify the value of the AuthName attribute:
AuthName => '"Private Area"',

The value is quoted twice because Apache expects a single value for this argu-
ment, and if we write:

AuthName => 'Private Area’,
<Perl> will pass two values to Apache, “Private” and “Area”, and Apache will
refuse to start, with the following complaint:

[Thu May 16 17:01:20 2002] [error] <Perl>: AuthName takes one
argument, The authentication realm (e.g. "Members Only")

126

| Chapter4: mod_perl Configuration

%

é ,ch04.21778 Page 127 Thursday, November 18, 2004 12:35 PM

* If a block section accepts two or more identical keys (as the <VirtualHost> ...
</VirtualHost> section does), the same rules as in the previous case apply, but
a reference to an array of hashes is used instead.

In one company, we had to run an Intranet machine behind a NAT/firewall
(using the 10.0.0.10 IP address). We decided up front to have two virtual hosts
to make both the management and the programmers happy. We had the follow-
ing simplistic setup:

NameVirtualHost 10.0.0.10

<VirtualHost 10.0.0.10>
ServerName tech.intranet
DocumentRoot /home/httpd/docs/tech
ServerAdmin webmaster@tech.intranet
</VirtualHost>

<VirtualHost 10.0.0.10>
ServerName suit.intranet
DocumentRoot /home/httpd/docs/suit
ServerAdmin webmaster@suit.intranet
</VirtualHost>

In Perl, we wrote it as follows:

<Perl>

$NameVirtualHost => '10.0.0.10';

my $doc_root = "/home/httpd/docs";

$VirtualHost{'10.0.0.10'} = [
{
ServerName => 'tech.intranet',
DocumentRoot => "$doc_root/tech",
ServerAdmin => 'webmaster@tech.intranet’,
b
{

ServerName => 'suit.intranet',
DocumentRoot => "$doc_root/suit",
ServerAdmin => 'webmaster@suit.intranet’,

1
I
</Perl>
Because normal Perl rules apply, more entries can be added as needed using
push().” Let’s say we want to create a special virtual host for the company’s pres-
ident to show off to his golf partners, but his fancy vision doesn’t really fit the
purpose of the Intranet site. We just let him handle his own site:

push @{ $VirtualHost{'10.0.0.10'} },
{

ServerName => 'president.intranet’,

* For complex configurations with multiple entries, consider using the module Tie::DxHash, which imple-
ments a hash that preserves insertion order and allows duplicate keys.

Apache Configurationin Perl | 127

4~ ~4]e

é ,ch04.21778 Page 128 Thursday, November 18, 2004 12:35 PM

DocumentRoot => "$doc_root/president"”,
ServerAdmin => 'webmaster@president.intranet’,
1
* Nested block directives naturally become Perl nested data structures. Let’s
extend an example from the previous section:

<Perl>
my $doc_root = "/home/httpd/docs";
push @{ $VirtualHost{'10.0.0.10'} },
{
ServerName => 'president.intranet’,
DocumentRoot => "$doc_root/president”,
ServerAdmin => 'webmaster@president.intranet’,

Location = {

"/private” = {
Options => 'Indexes',
AllowOverride => 'None',
AuthType => 'Basic’,
AuthName => '"Do Not Enter"',
AuthUserFile => 'private/.htpasswd',
Require => 'valid-user',

b

"/perlrun" => {
SetHandler => 'perl-script’,

PerlHandler => 'Apache::PerlRun’,
PerlSendHeader => 'On',
Options => "+ExecCCI',
b
1
1
</Perl>
We have added two Location blocks. The first, /private, is for the juicy stuff and
accessible only to users listed in the president’s password file. The second, /perl-
run, is for running dirty Perl CGI scripts, to be handled by the Apache: :PerIRun

handler.

* <Perl> sections don’t provide equivalents for <IfModule> and <IfDefine> contain-
ers. Instead, you can use the module() and define() methods from the Apache
package. For example:

<IfModule mod_ssl.c>
Include ssl.conf
</IfModule>

can be written as:

if (Apache->module("mod ssl.c")) {
push @Include, "ssl.conf";
}

And this configuration example:

<IfDefine SSL>
Include ssl.conf
</IfDefine>

128 | Chapter4: mod_perl Configuration

4~ ~4]e

é ,ch04.21778 Page 129 Thursday, November 18, 2004 12:35 PM

can be written as:

if (Apache->define("SSL")) {
push @Include, "ssl.conf";
}

Now that you know how to convert the usual configuration directives to Perl code,
there’s no limit to what you can do with it. For example, you can put environment
variables in an array and then pass them all to the children with a single configura-
tion directive, rather than listing each one via PassEnv or PerlPassEnv:
<Perl>
my @env = qw(MYSOL_HOME CVS_RSH);

push @PerlPassEnv, \@env;
</Perl>

Or suppose you have a cluster of machines with similar configurations and only
small distinctions between them. Ideally, you would want to maintain a single con-

figuration file, but because the configurations aren’t exactly the same (for example,
the ServerName directive will have to differ), it’s not quite that simple.

<Perl> sections come to the rescue. Now you can have a single configuration file and
use the full power of Perl to tweak the local configuration. For example, to solve the
problem of the ServerName directive, you might have this <Perls section:
<Perl>
use Sys::Hostname;

$ServerName = hostname();
</Perl>

and the right machine name will be assigned automatically.

Or, if you want to allow personal directories on all machines except the ones whose
names start with secure, you can use:
<Perl>
use Sys::Hostname;
$ServerName = hostname();
if ($ServerName !~ /~secure/) {
$UserDir = "public.html";

}
</Perl>

Breaking Out of <Perl> Sections

Behind the scenes, mod_perl defines a package called Apache: :ReadConfig in which it
keeps all the variables that you define inside the <Perl> sections. So <Perl> sections
aren’t the only way to use mod_perl to configure the server: you can also place the
Perl code in a separate file that will be called during the configuration parsing with
either PerlModule or PerlRequire directives, or from within the startup file. All you

have to do is to declare the package Apache: :ReadConfig before writing any code in
this file.

Apache Configurationin Perl | 129

4~ ~4]e

é ,ch04.21778 Page 130 Thursday, November 18, 2004 12:35 PM

Using the last example from the previous section, we place the code into a file named
apache_config.pl, shown in Example 4-4.

Example 4-4. apache_config.pl
package Apache::ReadConfig;

use Sys::Hostname;

$ServerName = hostname();

if ($ServerName !~ /*secure/) {
$UserDir = "public.html”;

}

1;

Then we execute it either from httpd.conf:
PerlRequire /home/httpd/perl/lib/apache config.pl
or from the startup.pl file:

require "/home/httpd/perl/1lib/apache_config.pl”;

Cheating with Apache->httpd_conf

In fact, you can create a complete configuration file in Perl. For example, instead of
putting the following lines in httpd.conf:

NameVirtualHost 10.0.0.10

<VirtualHost 10.0.0.10>
ServerName tech.intranet
DocumentRoot /home/httpd/httpd perl/docs/tech
ServerAdmin webmaster@tech.intranet
</VirtualHost>

<VirtualHost 10.0.0.10>
ServerName suit.intranet
DocumentRoot /home/httpd/httpd perl/docs/suit
ServerAdmin webmaster@suit.intranet
</VirtualHost>

You can write it in Perl:

use Socket;

use Sys::Hostname;

my $hostname = hostname();

(my $domain = $hostname) =~ s/[*.]+\.//;

my $ip = inet ntoa(scalar gethostbyname($hostname || 'localhost'));
my $doc_root = '/home/httpd/docs’;

Apache->httpd_conf(qq{
NameVirtualHost $ip

<VirtualHost $ip>
ServerName tech.$domain

130 | Chapter4: mod_perl Configuration

4~ ~4]e

é ,ch04.21778 Page 131 Thursday, November 18, 2004 12:35 PM

DocumentRoot $doc_root/tech
ServerAdmin webmaster\@tech.$domain
</VirtualHost>

<VirtualHost $ip>
ServerName suit.$domain
DocumentRoot $doc_root/suit
ServerAdmin webmaster\@suit.$domain
</VirtualHost>

1

First, we prepare the data, such as deriving the domain name and IP address from
the hostname. Next, we construct the configuration file in the “usual” way, but using
the variables that were created on the fly. We can reuse this configuration file on
many machines, and it will work anywhere without any need for adjustment.

Now consider that you have many more virtual hosts with a similar configuration.
You have probably already guessed what we are going to do next:

use Socket;

use Sys::Hostname;

my $hostname = hostname();

(my $domain = $hostname) =~ s/[*.]+\.//;

my $ip = inet ntoa(scalar gethostbyname($hostname || 'localhost'));
my $doc_root = '/home/httpd/docs’;

my @vhosts = gw(suit tech president);

Apache->httpd_conf("NameVirtualHost $ip");

for my $vh (@vhosts) {
Apache->httpd_conf(qq{
<VirtualHost $ip>
ServerName $vh.$domain
DocumentRoot $doc_root/$vh
ServerAdmin webmaster\@$vh.$domain
</VirtualHost>

1
}

In the loop, we create new virtual hosts. If we need to create 100 hosts, it doesn’t
take a long time—just adjust the @vhosts array.

Declaring Package Names in Perl Sections

Be careful when you declare package names inside <Perl> sections. For example, this
code has a problem:

<Perl>
package Book::Trans;
use Apache::Constants qw(:common);
sub handler { OK }

$PerlTransHandler = "Book::Trans";
</Perl>

Apache Configurationin Perl | 131

%

é ,ch04.21778 Page 132 Thursday, November 18, 2004 12:35 PM

When you put code inside a <Perl> section, by default it goes into the Apache::
ReadConfig package, which is already declared for you. This means that the
PerlTransHandler we tried to define will be ignored, since it’s not a global variable in
the Apache: :ReadConfig package.

If you define a different package name within a <Perl> section, make sure to close the
scope of that package and return to the Apache: :ReadConfig package when you want
to define the configuration directives. You can do this by either explicitly declaring
the Apache: :ReadConfig package:
<Perl>
package Book::Trans;

use Apache::Constants qw(:common);
sub handler { OK }

package Apache::ReadConfig;
$PerlTransHandler = "Book::Trans";
</Perl>

or putting the code that resides in a different package into a block:

<Perl>

{

package Book::Trans;
use Apache::Constants qw(:common);
sub handler { OK }

}

$PerlTransHandler = "Book::Trans";
</Perl>
so that when the block is over, the Book: : Trans package’s scope is over, and you can
use the configuration variables again.

However, it’s probably a good idea to use <Perl> sections only to create or adjust
configuration directives. If you need to run some other code not related to configura-
tion, it might be better to place it in the startup file or in its own module. Your mile-
age may vary, of course.

Verifying <Perl> Sections

How do we know whether the configuration made inside <Perl> sections was cor-
rect?

First we need to check the validity of the Perl syntax. To do that, we should turn it
into a Perl script, by adding #!perl at the top of the section:

<Perl>

#perl

... code here ...
__END__

</Perl>

132 | Chapter4: mod_perl Configuration

é ,ch04.21778 Page 133 Thursday, November 18, 2004 12:35 PM

Notice that #!perl and __END__ must start from the column zero. Also, the same
rules as we saw earlier with validation of the startup file apply: if the <Perl> section
includes some modules that can be loaded only when mod_perl is running, this vali-
dation is not applicable.

Now we may run:
perl -cx httpd.conf

If the Perl code doesn’t compile, the server won’t start. If the Perl code is syntacti-
cally correct, but the generated Apache configuration is invalid, <Perl> sections will
just log a warning and carry on, since there might be globals in the section that are
not intended for the configuration at all.

If you have more than one <Perl> section, you will have to repeat this procedure for
each section, to make sure they all work.

To check the Apache configuration syntax, you can use the variable $Apache::
Server::StrictPerlSections, added in mod_perl Version 1.22. If you set this vari-
able to a true value:

$Apache: :Server::StrictPerlSections = 1;

then mod_perl will not tolerate invalid Apache configuration syntax and will croak
(die) if it encounters invalid syntax. The default value is 0. If you don’t set $Apache: :
Server::StrictPerlSections to 1, you should localize variables unrelated to configu-
ration with my() to avoid errors.

If the syntax is correct, the next thing we need to look at is the parsed configuration
as seen by Perl. There are two ways to see it. First, we can dump it at the end of the
section:
<Perl>
use Apache::PerlSections ();
code goes here

print STDERR Apache::PerlSections->dump();
</Perl>

Here, we load the Apache: :PerlSections module at the beginning of the section, and
at the end we can use its dump() method to print out the configuration as seen by
Perl. Notice that only the configuration created in the section will be seen in the
dump. No plain Apache configuration can be found there.

For example, if we adjust this section (parts of which we have seen before) to dump
the parsed contents:

<Perl>
use Apache::PerlSections ();
$User = getpwuid($>) || $>;
$Group = getgrgid($)) || $);
push @Alias, [qw(/private /home/httpd/docs/private)];
my $doc_root = "/home/httpd/docs";
push @{ $VirtualHost{'10.0.0.10'} },

Apache Configurationin Perl | 133

4~ ~4]e

é ,ch04.21778 Page 134 Thursday, November 18, 2004 12:35 PM

ServerName => 'president.intranet’,
DocumentRoot => "$doc_root/president”,
ServerAdmin => 'webmaster@president.intranet’,

Location = {

"/private” = {
Options => 'Indexes’,
AllowOverride => 'None',
AuthType => 'Basic',
AuthName => ""Do Not Enter"',
AuthUserFile => 'private/.htpasswd',
Require => 'valid-user',

),

"/perlrun” => {
SetHandler => 'perl-script’,

PerlHandler => 'Apache::PerlRun’,
PerlSendHeader => 'On’',
Options => '+ExecCCI',
1
b
1
print STDERR Apache::PerlSections->dump();
</Perl>

This is what we get as a dump:

package Apache::ReadConfig;
#hashes:

%VirtualHost = (
'10.0.0.10" => [
{
"Location' => {
"/private' => {
'AllowOverride’ => 'None',
'AuthType' => 'Basic',
'Options' => 'Indexes',
'AuthUserFile' => 'private/.htpasswd',
'AuthName' => '"Do Not Enter"',
'Require’' => 'valid-user’
b
"/perlrun’ => {
'PerlHandler' => 'Apache::PerlRun’,
'Options' => '+ExecCGI',
'PerlSendHeader' => 'On',
'SetHandler' => 'perl-script’
}
b
'DocumentRoot' => '/home/httpd/docs/president’,
'ServerAdmin' => 'webmaster@president.intranet’,
'ServerName' => 'president.intranet’

134 | Chapter4: mod_perl Configuration

4~ ~4]e

é ,ch04.21778 Page 135 Thursday, November 18, 2004 12:35 PM

#arrays:

@Alias = (
[
'/private’,
' /home/httpd/docs/private’

]
)s

#scalars:
$Group = 'stas’;
$User = 'stas’';

1;
END_

You can see that the configuration was created properly. The dump places the out-
put into three groups: arrays, hashes, and scalars. The server was started as user stas,
so the $User and $Group settings were dynamically assigned to the user stas.

A different approach to seeing the dump at any time (not only during startup) is to
use the Apache: :Status module (see Chapter 9). First we store the Perl configuration:
<Perl>
$Apache: :Server: :SaveConfig = 1;
the actual configuration code
</Perl>
Now the Apache: :ReadConfig namespace (in which the configuration data is stored)
will not be flushed, making configuration data available to Perl modules at request
time. If the Apache: : Status module is configured, you can view it by going to the /perl-
status URI (or another URI that you have chosen) in your browser and selecting “Perl
Section Configuration” from the menu. The configuration data should look some-
thing like that shown in Figure 4-1.

Since the Apache: :ReadConfig namespace is not flushed when the server is started,
you can access the configuration values from your code—the data resides in the
Apache: :ReadConfig package. So if you had the following Perl configuration:
<Perl>
$Apache: :Server: :SaveConfig = 1;
$DocumentRoot = "/home/httpd/docs/mine";
</Perl>
at request time, you could access the value of $DocumentRoot with the fully qualified
name $Apache::ReadConfig: :DocumentRoot. But usually you don’t need to do this,
because mod_perl provides you with an API to access to the most interesting and
useful server configuration bits.

Apache Configurationin Perl | 135

é ,ch04.21778 Page 136 Thursday, November 18, 2004 12:35 PM

| Q Q @ Q : |% hittpsiocalhost S000per-status Peection_config | o .m”
» Iz |
Fs
package apache::ReadConfig;
thashes:
iVirtualHost = [
‘10.0.0.10" == [
i
'Location' =» |
"fshowoff' =» {
'Allowlverride' => 'None', =]
L "AuthType' => 'Basic’',
'"Optiocns' => 'Indexes',
'suthUserFile' => 'showoff/ htpasswd',
G "AuthName' => '"Do Hot Enter"',
'Require' => 'walid-user'
} ,
'fperlrun' => {
'PerlHandler' => 'Apache::PerlRun',
'Options' = '+ExecCGI',
'PerlfendHeader' => 'On',
'SetHandler' => 'perl-script!’
I
} ’
'DocumentRoot!' => ' fhome/httpd/docs/president ',
'Sergariadmin! = 'wrehmast erAnrecsident intranet!
b = &F @3 | Docurvert:none . M5 2ecs) [== e

Figure 4-1. <Perl> sections configuration dump

Saving the Perl Configuration

Instead of dumping the generated Perl configuration, you may decide to store it in a
file. For example, if you want to store it in httpd_config.pl, you can do the following:
<Perl>
use Apache::PerlSections ();
code goes here
Apache: :PerlSections->store("httpd_config.pl");
</Perl>
You can then require() that file in some other <Perl> section. If you have the whole
server configuration in Perl, you can start the server using the following trick:

panic% httpd -C "PerlRequire httpd config.pl"”

Apache will fetch all the configuration directives from httpd_config.pl, so you don’t
need httpd.conf at all.

136 | Chapter4: mod_perl Configuration

4~ ~4]e

é ,ch04.21778 Page 137 Thursday, November 18, 2004 12:35 PM

Debugging

If your configuration doesn’t seem to do what it’s supposed to do, you should debug
it. First, build mod_perl with:

panic% perl Makefile.PL PERL TRACE=1 [...]

Next, set the environment variable MOD_PERL_TRACE to s (as explained in Chapter 21).

Now you should be able to see how the <Perl> section globals are converted into

directive string values. For example, suppose you have the following Perl section:
<Perl>

$DocumentRoot = "/home/httpd/docs/mine";
</Perl>

If you start the server in single-server mode (e.g., under bash):
panic% MOD_PERL_TRACE=s httpd -X

you will see these lines among the printed trace:

SVt_PV: $DocumentRoot = */home/httpd/docs/mine’
handle_command (DocumentRoot /home/httpd/docs/mine): OK

But what if you mistype the directory name and pass two values instead of a single
value? When you start the server, you’ll see the following error:

SVt _PV: $DocumentRoot = °/home/httpd/docs/ mine'
handle_command (DocumentRoot /home/httpd/docs/ mine):
DocumentRoot takes one argument,

Root directory of the document tree

and of course the error will be logged in the error_log file:

[Wed Dec 20 23:47:31 2000] [error]
(2)No such file or directory: <Perl>:
DocumentRoot takes one argument,

Root directory of the document tree

Validating the Configuration Syntax

Before you restart a server on a live production machine after the configuration has
been changed, it’s essential to validate that the configuration file is not broken. If the
configuration is broken, the server won’t restart and users will find your server
offline for the time it’ll take you to fix the configuration and start the server again.

You can use apachectl configtest or httpd -t to validate the configuration file without
starting the server. You can safely validate the configuration file on a running pro-
duction server, as long as you run this test before you restart the server with

Validating the Configuration Syntax | 137

4~ ~4]e

é ,ch04.21778 Page 138 Thursday, November 18, 2004 12:35 PM

apachectl restart. Of course, it is not 100% perfect, but it will reveal any syntax errors
you might have made while editing the file.

The validation procedure doesn’t just parse the code in startup.pl, it executes it too.
<Perl> sections invoke the Perl interpreter when reading the configuration files, and
PerlRequire and PerlModule do so as well.

Of course, we assume that the code that gets called during this test cannot cause any

harm to your running production environment. If you’re worried about that, you can

prevent the code in the startup script and in <Perl> sections from being executed

during the syntax check. If the server configuration is tested with -Dsyntax_check:
panic% httpd -t -Dsyntax_check

you can check in your code whether syntax_check was set with:
Apache->define('syntax_check")

If, for example, you want to prevent the code in startup.pl from being executed, add
the following at the top of the code:

return if Apache->define('syntax_check');

Of course, there is nothing magical about using the string 'syntax_check' as a flag—
you can use any other string as well.

The Scope of mod_ perl Configuration
Directives

Table 4-1 depicts where the various mod_perl configuration directives can be used.

Table 4-1. The Scope of mod_perl configuration directives

Directive Global <VirtualHost> <Directory>
PerlTaintCheck v
PerlWarn v
PerlFreshRestart V
PerlPassEnv v
PerlRequire v
PerlModule v
PerlAddVar v
PerlSetEnv v
PerlSetVar v
PerlSetupEnv v

%

\

PerlSendHeader

< < < <<= <<
< S s S ESS <<

<Perl> Sections

138 | Chapter4: mod_perl Configuration

4~ ~4]e

é ,ch04.21778 Page 139 Thursday, November 18, 2004 12:35 PM

The first column represents directives that can appear in the global configuration; that
is, outside all sections. Note that Per1TaintCheck, PerlWarn, and PerlFreshRestart can
be placed inside <VirtualHost> sections. However, because there’s only one Perl inter-
preter for all virtual hosts and the main server, setting any of these values in one vir-
tual host affects all other servers. Therefore, it’s probably a good idea to think of these
variables as being allowed only in the global configuration.

The second column represents directives that can appear inside the <VirtualHost>
sections.

The third column represents directives that can appear in the <Directory>,
<Location>, and <Files> sections and all their regex variants. These mod_perl direc-
tives can also appear in .htaccess files.

For example, PerlWarn cannot be used in <Directory> and <VirtualHost> sections.
However, PerlSetEnv can be used anywhere, which allows you to provide different
behavior in different sections:

PerlSetEnv ADMIN EMAIL webmaster@example.com

<Location /bar/manage/>

PerlSetEnv ADMIN_EMAIL bar@example.com

</Location>
In this example, a handler invoked from /bar/manage/ will see the ADMIN_EMAIL envi-
ronment variable as bar@example.com, while other handlers configured elsewhere will
see ADMIN_EMAIL as the default value, webmaster@example.com.

Apache Restarts Twice

When the server is restarted, the configuration and module initialization phases are
called twice before the children are forked. The second restart is done to test that all
modules can survive a restart (SICHUP), in order to ensure that future graceful restarts
will work correctly. This is very important if you are going to restart a production
server.

You can control what Perl code will be executed on the start or restart by checking
the values of $Apache::Server::Starting and $Apache::Server::ReStarting. The
former variable is true when the server is starting, and the latter is true when it’s
restarting.

For example, if you want to be notified when the server starts or restarts, you can do:

<Perl>
email_notify("start") if $Apache::Server::Starting;
email notify("restart") if $Apache::Server::ReStarting;
</Perl>
where the function email notify() (that you have to write) performs the notifica-
tion. Since Apache restarts itself on start, you will get both notifications when
Apache is started, and only one when it’s restarted.

Apache Restarts Twice | 139

4~ ~4]e

é ,ch04.21778 Page 140 Thursday, November 18, 2004 12:35 PM

The startup.pl file and similar files loaded via PerlModule or PerlRequire are com-
piled only once, because once the module is compiled, it enters the special ¥INC hash.
When Apache restarts, Perl checks whether the module or script in question is
already registered in INC and won’t try to compile it again.

Thus, the only code that you might need to protect from running on restart is the
code in <Perl> sections. But since <Perl> sections are primarily used for creating on-
the-fly configurations, it shouldn’t be a problem to run the code more than once.

Enabling Remote Server Configuration
Reports

The nifty mod_info Apache module displays the complete server configuration in
your browser. In order to use it, you have to compile it in or, if the server was com-
piled with DSO mode enabled, load it as an object. Then just uncomment the
already prepared section in the httpd.conf file:
<Location /server-info>

SetHandler server-info

Order deny,allow

Deny from all

Allow from localhost
</Location>

Now restart the server and issue the request:
http://localhost/server-info

We won’t show a snapshot of the output here, as it’s very lengthy. However, you
should know that mod_info is unaware of the configuration created or modified by
<Perl> sections or equivalent methods discussed earlier in this chapter.

Tips and Tricks

The following are miscellaneous tips and tricks that might save you lots of time when
configuring mod_perl and Apache.

Publishing Port Numbers Other Than 80

If you are using a dual-server setup, with a mod_perl server listening on a high port
(e.g., 8080), don’t publish the high port number in URLs. Rather, use a proxying
rewrite rule in the non-mod_perl server:

RewriteEngine On

Rewriteloglevel 0

RewriteRule ~/perl/(.*) http://localhost:8080/perl/$1 [P]
ProxyPassReverse / http://localhost/

140 | Chapter4: mod_perl Configuration

- ad

é ,ch04.21778 Page 141 Thursday, November 18, 2004 12:35 PM

*

In the above example, all the URLs starting with /perl are rewritten to the backend
server, listening on port 8080. The backend server is not directly accessible; it can be
reached only through the frontend server.

One of the problems with publishing high port numbers is that Microsoft Internet
Explorer (IE) 4.x has a bug when re-posting data to a URL with a nonstandard port
(i.e., anything but 80). It drops the port designator and uses port 80 anyway. Hence,
your service will be unusable for IE 4.x users.

Another problem is that firewalls will probably have most of the high ports closed,
and users behind them will be unable to reach your service if it is running on a
blocked port.

Running the Same Script from Different Virtual Hosts

When running under a virtual host, Apache: :Registry and other registry family han-
dlers will compile each script into a separate package. The package name includes
the name of the virtual host if the variable $Apache: :Registry: :NameWithVirtualHost
is set to 1. This is the default behavior.

Under this setting, two virtual hosts can have two different scripts accessed via the
same URI (e.g., /perl/guestbook.pl) without colliding with each other. Each virtual
host will run its own version of the script.

However, if you run a big service and provide a set of identical scripts to many vir-
tual hosts, you will want to have only one copy of each script compiled in memory.
By default, each virtual host will create its own copy, so if you have 100 virtual hosts,
you may end up with 100 copies of the same script compiled in memory, which is
very wasteful. If this is the case, you can override the default behavior by setting the
following directive in a startup file or in a <Perl> section:

$Apache: :Registry: :NameWithVirtualHost = 0;

But be careful: this makes sense only if you are sure that there are no other scripts
with identical URIs but different content on different virtual hosts.

Users of mod_perl v1.15 are encouraged to upgrade to the latest stable version if this
problem is encountered—it was solved starting with mod_perl v1.16.

Configuration Security Concerns

Any service open to the Internet at large must take security into account. Large, com-
plex software tends to expose subtle vulnerabilities that attackers can exploit to gain
unauthorized access to the server host. Third-party modules or libraries can also con-
tain similarly exploitable bugs. Perl scripts aren’t immune either: incorrect untaint-
ing and sanitizing of user input can lead to disaster when this input is fed to the
open() or system() functions.

Configuration Security Concerns | 141

%

ﬁ

*@%

é ,ch04.21778 Page 142 Thursday, November 18, 2004 12:35 PM

Also, if the same mod_perl server is shared by more than one user, you may need to
protect users of the server from each other (see Appendix C).

Using Only Absolutely Necessary Components

The more modules you have enabled in your web server, the more complex the code
and interaction between these modules will be. The more complex the code in your
web server, the more chances for bugs there are. The more chances for bugs, the
more chance there is that some of those bugs may involve security holes.

Before you put the server into production, review the server setup and disable any
unused modules. As time goes by, the server enviroment may change and some mod-
ules may not be used anymore. Do periodical revisions of your setups and disable
modules that aren’t in use.

Taint Checking

Make sure to run the server with the following setting in the httpd.conf file:
PerlTaintCheck On

As discussed in Chapter 6, taint checking doesn’t ensure that your code is com-
pletely safe from external hacks, but it does force you to improve your code to pre-
vent many potential security problems.

Hiding Server Information

We aren’t completely sure why the default value of the ServerTokens directive in
Apache is Full rather than Minimal. It seems like Full is really useful only for debug-
ging purposes. A probable reason for using ServerTokens Full is publicity: it means
that Netcraft (http://netcraft.com/) and other similar survey services will count more
Apache servers, which is good for all of us. In general, though, you really want to
reveal as little information as possible to potential crackers.

Another approach is to modify the httpd sources to not reveal any unwanted infor-
mation, so that all responses return an empty or phony Server: field.

Be aware, however, that there’s no security by obscurity (as the old saying goes). Any
determined cracker will eventually figure out what version of Apache is running and
what third-party modules are built in.

You can see what information is revealed by your server by telneting to it and issu-
ing some request. For example:

panic% telnet localhost 8080
Trying 127.0.0.1

Connected to localhost
Escape character is '*]'.
HEAD / HTTP/1.0

142 | Chapter4: mod_perl Configuration

é ,ch04.21778 Page 143 Thursday, November 18, 2004 12:35 PM

HTTP/1.1 200 OK
Date: Sun, 16 Apr 2000 11:06:25 GMT
Server: Apache/1.3.24 (Unix) mod perl/1.26 mod ss1/2.8.8 OpenSSL/0.9.6
[more lines snipped]
As you can see, a lot of information is revealed when ServerTokens Full has been

specified.

Making the mod_ perl Server Inaccessible from the OQutside

It is best not to expose mod_perl to the outside world, as it creates a potential secu-
rity risk by revealing which modules you use and which operating system you are
running your web server on. In Chapter 12, we show how to make mod_perl inac-
cessible directly from the outside by listening only to the request coming from mod_
proxy at the local host (127.0.0.1).

Protecting Private Status Locations

It’s a good idea to protect your various monitors, such as /perl-status, by password.
The less information you provide for intruders, the harder it will be for them to break
in. (One of the biggest helps you can provide for these bad guys is to show them all
the scripts you use. If any of these are in the public domain, they can grab the source
of the script from the Web, study it, and probably find a few or even many security
holes in it.)

Security by obscurity may help to wave away some of the less-determined malicious
fellas, but it doesn’t really work against a determined intruder. For example, con-
sider the old <Limit> container:

<Location /sys-monitor>
SetHandler perl-script
PerlHandler Apache::VMonitor
AuthUserFile /home/httpd/perl/.htpasswd
AuthGroupFile /dev/null
AuthName "Server Admin"
AuthType Basic
<Limit GET POST>

require user foo bar

</Limit>

</Location>

Use of the <Limit> container is a leftover from NCSA server days that is still visible in
many configuration examples today. In Apache, it will limit the scope of the require
directive to the GET and POST request methods. Use of another method will bypass
authentication. Since most scripts don’t bother checking the request method, con-
tent will be served to the unauthenticated users.

Configuration Security Concerns | 143

- ad

é ,ch04.21778 Page 144 Thursday, November 18, 2004 12:35 PM

For this reason, the Limit directive generally should not be used. Instead, use this
secure configuration:
<Location /sys-monitor>
SetHandler perl-script
PerlHandler Apache::VMonitor
AuthUserFile /home/httpd/perl/.htpasswd
AuthGroupFile /dev/null
AuthName "Server Admin"
AuthType Basic
require user foo bar
</Location>
The contents of the password file (thome/httpd/perl/.hipasswd) are populated by the
htpasswd utility, which comes bundled with Apache:

f00:1SA3h/d27mCp
bar :WbWQhZM3m4k1

General Pitfalls

The following are some of the mostly frequently asked questions related to mod_perl
configuration issues (and the answers, of course).

My CGl/Perl code is returned as plain text instead of being executed by the web server.
Check your configuration files and make sure that +ExecCGI is turned on in your
configurations. + adds an option without resetting any options that were previ-
ously set. So this is how the <Location> section might look:

<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry
Options +ExecCCI
PerlSendHeader On
</Location>

My script works under mod_cgi, but when called via mod_perl, I get a Save As prompt.
You probably sent the HTTP header via print():

print "Content-type: text/html\n\n";

If this is the case, you must make sure that you have:
PerlSendHeader On

in the configuration part of the <Location> section:

<Location /perl>

PerlSendHeader On
</Location>
This adds a little overhead to the output generation, because when this configu-
ration is enabled, mod_perl will parse the output and try to find where the
header information ends so it can be converted into a proper HTTP header. It is
meant only for mod_cgi emulation with regard to HTTP headers.

144 | Chapter4: mod_perl Configuration

4~ ~4]e

é ,ch04.21778 Page 145 Thursday, November 18, 2004 12:35 PM

*

Is there a way to provide a different startup.pl file for each individual virtual host?
No. Any virtual host will be able to see the routines from a startup.pl file loaded
for any other virtual host.

References

* To learn regular expressions for use in <DirectoryMatch> or equivalent sections,
the book Mastering Regular Expressions, by Jeffrey E. F. Friedl (O’Reilly), may
prove to be an invaluable resource.

* Chapters 4 and 8 of Professional Apache, by Peter Wainwright (Wrox Press),
explain how to configure Apache the way you want and improve Apache’s per-
formance.

* Chapter 3 of Apache: The Definitive Guide, by Ben Laurie and Peter Laurie
(O’Reilly), talks extensively about the Apache configuration process.

* Chapter 8 of Writing Apache Modules with Perl and C, by Lincoln Stein and
Doug MacEachern (O’Reilly), talks extensively about configuration customiza-
tion with mod_perl.

* The extensive configuration manual at http://httpd.apache.org/docs/.

* mod_macro is a module that allows the definition and use of macros within
Apache runtime configuration files. The syntax is a natural extension to Apache
HTML-like configuration style. It’s very useful if you have to configure many
sections (e.g., when you have many virtual hosts) and haven’t learned about
<Perl> sections yet.

mod_macro is available from http://www.cri.ensmp.fr/~coelho/mod_macrol.

References | 145

- .
4~ ~4]e

