é ,appe.27906 Page 835 Thursday, November 18, 2004 12:50 PM

*

APPENDIXE
The AxKit XML Application Server

AxKit is an XML application server written using the mod_perl framework. At its
core, AxKit provides the developer with many ways to set up server-side XML trans-
formations. This allows you to rapidly develop sites that use XML, allowing delivery
of the same content in different formats. It also allows you to change the layout of
your site very easily, due to the forced separation of content from presentation.

This appendix gives an overview of the ways you can put AxKit to use on your mod_
perl-enabled server. It is not a complete description of all the capabilities of AxKit.
For more detailed information, please take a look at the documentation provided on
the AxKit web site at http://axkit.org/. Commercial support and consultancy services
for AxKit also are available at this site.

There are a number of benefits of using XML for content delivery:

* Perhaps the most obvious benefit is the longevity of your data. XML is a format
that is going to be around for a very long time, and if you use XML, your data
(the content of your site) can be processed using standard tools for multiple plat-
forms and languages for years to come.

* If you use XSLT as a templating solution, you can pick from a number of differ-
ent implementations. This allows you to easily switch between tools that best
suit your task at hand.

* XSLT takes a fundamentally different approach to templating than almost every
other Perl templating solution. Rather than focusing on “sandwiching” the data
into the template at various positions, XSLT transforms a tree representation of
your data into another tree. This not only makes the output (in the case of
HTML) less prone to mismatched tags, but it also makes chained processing, in
which the output of one transformation becomes the input of another, a lot sim-
pler and faster.

835

*@%

é ,appe.27906 Page 836 Thursday, November 18, 2004 12:50 PM

Installing and Configuring AxKit

There are many configuration options that allow you to customize your AxKit instal-
lation, but in this section we aim to get you started as quickly and simply as possi-
ble. This appendix assumes you already have mod_perl and Apache installed and
working. See Chapter 3 if this is not the case. This section does not cover installing
AxKit on Win32 systems, for which there is an ActiveState package at ftp://theoryx5.
uwinnipeg.cal/pub/other/ppd).

First download the latest version of AxKit, which you can get either from your local
CPAN archive or from the AxKit download directory at http://axkit.org/. Then type
the following:

panic% gunzip -c AxKit-x.xx.tar.gz | tar xvf -

panic% cd AxKit-x.xx.tar.gz

panic% perl Makefile.PL

panic% make

panic% make test

panic% su

panic# make install
If Perl’s Makefile.PL warns you about missing modules, notably XML: :XPath, make a
note of the missing modules and install them from CPAN. AxKit will run without the
missing modules, but without XML: :XPath it will be impossible to run the examples in
this appendix.”

Now we need to add some simple options to the very end of our httpd.conf file:

PerIModule AxKit

SetHandler perl-script
PerlHandler AxKit
AxDebuglevel 10

PerlSetVar AxXPSInterpolate 1

This configuration makes it look as though AxKit will deliver all of your files, but
don’t worry: if it doesn’t detect XML at the URL you supply, it will let httpd deliver
the content. If you’re still concerned, put all but the first configuration directive in a
<Location> section. Note that the first line, PerIModule AxKit, must appear in httpd.
conf outside of any runtime configuration blocks. Otherwise, Apache cannot see the
AxKit configuration directives and you will get errors when you try to start httpd.

Now, assuming you have XML: :XPath installed (try perl -MXML::XPath -e0 on the
command line to check), restart Apache. You are now ready to begin publishing
transformed XML with AxKit!

* AxKit is very flexible in how it lets you transform the XML on the server, and there are many modules you
can plug in to AxKit to allow you to do these transformations. For this reason, the AxKit installation does
not mandate any particular modules to use. Instead, it will simply suggest modules that might help when
you install AxKit.

836 | AppendixE: The AxKit XML Application Server

4~ ~4]e

é ,appe.27906 Page 837 Thursday, November 18, 2004 12:50 PM

Your First AxKit Page

Now we’re going to see how AxKit works, by transforming an XML file containing
data about Camelids (note the dubious Perl reference) into HTML.

First you will need a sample XML file. Open the text editor of your choice and type
the code shown in Example E-1.

Example E-1. firstxml.xml

<?xml version="1.0"?>
<dromedaries>
<species name="Camel">
<humps>1 or 2</humps>
<disposition>Cranky</disposition>
</species>
<species name="Llama">
<humps>1</humps>
<disposition>Aloof</disposition>
</species>
<species name="Alpaca">
<humps>(see Llama)</humps>
<disposition>Friendly</disposition>
</species>
</dromedaries>

Save this file in your web server document root (e.g., /home/httpd/httpd_perl/htdocs/)
as firstxml.xml.

Now we need a stylesheet to transform the XML to HTML. For this first example we
are going to use XPathScript, an XML transformation language specific to AxKit.
Later we will give a brief introduction to XSLT.

Create a new file and type the code shown in Example E-2.

Example E-2. firstxml.xps

<%
$t->{"humps' }{pre} = "<td>";
$t->{"humps'}{post} = "</td>";
$t->{"'disposition'}{pre} = "<td>";
$t->{"'disposition’}{post} = "</td>";
$t->{"'species' }{pre} = "<tr><td>{\@name}</td>";
$t->{"'species' H{post} = "</tr>";
%>
<html>
<head>
<title>Know Your Dromedaries</title>
</head>
<body>
<table border="1">
<tr><th>Species</th>
<th>No. of Humps</th>

Your First AxKit Page | 837

é ,appe.27906 Page 838 Thursday, November 18, 2004 12:50 PM

Example E-2. firstxml.xps (continued)

<th>Disposition</th></tr>
<%= apply templates('/dromedaries/species') %>
</table>
</body>
</html>

Save this file as firstxml.xps.

Now to get the original file, firstxml.xml, to be transformed on the server by text.xps,
we need to somehow associate that file with the stylesheet. Under AxKit there are a
number of ways to do that, with varying flexibility. The simplest way is to edit your
firstxml.xml file and, immediately after the <?xml version="1.0"?> declaration, add
the following;:
<?xml-stylesheet href="firstxml.xps"
type="application/x-xpathscript"?>

Now assuming the files are both in the same directory under your httpd document
root, you should be able to make a request for text.xml and see server-side trans-
formed XML in your browser. Now try changing the source XML file, and watch
AxKit detect the change next time you load the file in the browser.

If Something Goes Wrong

If you don’t see HTML in your browser but instead get the source XML, you will
need to check your error log. (In Internet Explorer you will see a tree-based represen-
tation of the XML, and in Mozilla, Netscape, or Opera you will see all the text of the
document joined together.)

AxKit sends out varying amounts of debug information depending on the value of
AxDebugLevel (which we set to the maximum value of 10). If you can’t decipher the
contents of the error log, contact the AxKit user’s mailing list at axkit-users@axkit.org
with details of your problem.

How it Works?

The stylesheet above specifies how the various tags work. The ASP <% %> syntax
delimits Perl code from HTML. You can execute any code within the stylesheet.

In this example, we use the special XPathScript $t hash reference, which specifies the
names of tags and how they should be output to the browser. There are several
options for the second level of the hash, and here we see two of those options: pre
and post. pre and post specify (respectfully) what appears before the tag and what
appears after it. These values in $t take effect only when we call the apply_
templates() function, which iterates over the nodes in the XML, executing the
matching values in $t.

838 | AppendixE: The AxKit XML Application Server

- ad

é ,appe.27906 Page 839 Thursday, November 18, 2004 12:50 PM

*

XPath

One of the key specifications being used in XML technologies is XPath. This is a lit-
tle language used within other languages for selecting nodes within an XML docu-
ment (just as regular expressions is a language of its own within Perl). The initial
appearance of an XPath is similar to that of a Unix directory path. In Example E-2
we can see the XPath /dromedaries/species, which starts at the root of the document,
finds the dromedaries root element, then finds the species children of the dromedar-
ies element. Note that unlike Unix directory paths, XPaths can match multiple
nodes; so in the case above, we select all of the species elements in the document.

Documenting all of XPath here would take up many pages. The grammar for XPath
allows many constructs of a full programming language, such as functions, string lit-
erals, and Boolean expressions. What’s important to know is that the syntax we are
using to find nodes in our XML documents is not just something invented for AxKit!

Dynamic Content

AxKit has a flexible tool called eXtensible Server Pages (XSP) for creating XML from
various data sources such as relational databases, cookies, and form parameters. This
technology was originally invented by the Apache Cocoon team, and AxKit shares
their syntax. This allows easier migration of projects to and from Cocoon. (Cocoon
allows you to embed Java code in your XSP, similar to how AxKit allows you to
embed Perl code.)

XSP is an XML-based syntax that uses namespaces to provide extensibility. In many
ways, this is like the Cold Fusion model of using tags to provide dynamic functional-
ity. One of the advantages of using XSP is that it is impossible to generate invalid
XML, which makes it ideal for use in an XML framework such as AxKit. Another is
that the tags can hide complex functionality, allowing the XSP tags to be added by
designers and freeing programmers to perform more complex and more cost-effec-
tive tasks.

The XSP framework allows you to design new tags, or use ones provided already by
others on CPAN. These extra tags are called taglibs. By using taglibs instead of
embedding Perl code in your XSP page, you can further build on AxKit’s separation
of content from presentation by separating out logic too. And creating new taglibs is
almost trivial using AxKit’s TagLibHelper module, which hides all the details for you.

In the examples below, we are going to show some code that embeds Perl code in the
XSP pages. This is not a recommended practice, due to the ease with which you can
extract functionality into tag libraries. However, it is more obvious to Perl program-
mers what is going on this way and provides a good introduction to the technology.

Dynamic Content | 839

ﬁ

*@%

é ,appe.27906 Page 840 Thursday, November 18, 2004 12:50 PM

Handling Form Parameters

The AxKit::XSP::Param taglib allows you to easily read form and query string param-
eters within an XSP page. The following example shows how a page can submit back
to itself. To allow this to work, add the following to your httpd.conf file:

AxAddXSPTaglib AxKit::XSP::Param

The XSP page is shown in Example E-3.

Example E-3. paramtaglib.xsp

<xsp:page
xmlns:xsp="http://apache.org/xsp/core/v1"
xmlns:param="http://axkit.org/NS/xsp/param/v1"
language="pPerl"
>
<page>
<xsp:logic>
if (<param:name/>) {
<xsp:content>
Your name is: <param:name/>
</xsp:content>
}
else {
<xsp:content>
<form>
Enter your name: <input type="text" name="name" />
<input type="submit"/>
</form>
</xsp:content>
}
</xsp:logic>
</page>
</xsp:page>

The most significant thing about this example is how we freely mix XML tags with
our Perl code, and the XSP processor figures out the right thing to do depending on
the context. The only requirement is that the XSP page itself must be valid XML.
That is, the following would generate an error:

<xsp:logic>

my $page = <param:page/>;

if ($page < 3) { # ERROR: less-than is a reserved character in XML

;o
</xsp:logic>

We need to convert this to valid XML before XSP can handle it. There are a number

of ways to do so. The simplest is just to reverse the expression to if (3 > $page),

because the greater-than sign is valid within an XML text section. Another way is to

encode the less-than sign as 81t;, which will be familiar to HTML authors.

840 | AppendixE: The AxKit XML Application Server

4~ ~4]e

é ,appe.27906 Page 841 Thursday, November 18, 2004 12:50 PM

The other thing to notice is the <xsp:logic> and <xsp:content> tags. The former
defines a section of Perl code, while the latter allows you to go back to processing the
contents as XML output. Also note that the <xsp:content> tag is not always needed.
Because the XSP engine inherently understands XML, you can omit the <xsp:
content> tag when the immediate child would be an element, rather than text. For
example, the following example requires the <xsp:content> tag:
<xsp:logic>
if (<param:name/>) {
xsp:content needed
<xsp:content>
Your name is: <param:name/>
</xsp:content>

}

</xsp:logic>
But if you rewrote it like this, it wouldn’t, because of the surrounding non-XSP tag:

<xsp:logic>

if (<param:name/>) {
no xsp:content tag needed
<p>Your name is: <param:name/></p>

}
</xsp:logic>
Note that the initial example, when processed by only the XSP engine, will output
the following XML.:
<page>
<form>
Enter your name: <input type="text" name="name" />
<input type="submit"/>
</form>
</page>
This needs to be processed with XSLT or XPathScript to be reasonably viewable in a
browser. However, the point is that you can reuse the above page as either HTML or
WML just by applying different stylesheets.

Handling Cookies

AxKit::XSP::Cookie is a taglib interface to Apache::Cookie (part of the libapreq pack-
age). The following example demonstrates both retrieving and setting a cookie from
within XSP. In order for this to run, the following option needs to be added to your

httpd.conf file:
AxAddXSPTaglib AxKit::XSP::Cookie

The XSP page is shown in Example E-4.

Dynamic Content | 841

é ,appe.27906 Page 842 Thursday, November 18, 2004 12:50 PM

Example E-4. cookietaglib.xsp

<xsp:page
xmlns:xsp="http://apache.org/xsp/core/v1"
xmlns:cookie="http://axkit.org/NS/xsp/cookie/v1
language="pPerl"
>
<page>
<xsp:logic>
my $value;
if ($value = <cookie:fetch name="count"/>) {
$value+t+;
}
else {
$value = 1;
}
</xsp:logic>
<cookie:create name="count">
<cookie:value><xsp:expr>$value</xsp:expr></cookie:value>
</cookie:create>
<p>Cookie value: <xsp:expr>$value</xsp:expr></p>
</page>
</xsp:page>

This page introduces the concept of XSP expressions, using the <xsp:expr> tag. In
XSP, everything that returns a value is an expression of some sort. In the last two
examples, we have used a taglib tag within a Perl if() statement. These tags are both
expressions, even though they don’t use the <xsp:expr> syntax. In XSP, everything
understands its context and tries to do the right thing. The following three examples
will all work as expected:

<cookie:value>3</cookie:value>
<cookie:value><xsp:expr>2 + 1</xsp:expr></cookie:value>

<cookie:value><param:cookie_value/></cookie:value>

We see this as an extension of how Perl works—the idea of “Do What I Mean,” or
DWIM.

Sending Email

With the AxKit::XSP::Sendmail taglib, it is very simple to send email from an XSP
page. This taglib combines email-address verification, using the Email::Valid mod-
ule, with email sending, using the Mail::Sendmail module (which will either inter-
face to an SMTP server or use the sendmail executable directly). Again, to allow
usage of this taglib, the following line must be added to httpd.conf:

AxAddXSPTaglib AxKit::XSP::Sendmail

Then sending email from XSP is as simple as what’s shown in Example E-5.

842 | AppendixE: The AxKit XML Application Server

4~ ~4]e

é ,appe.27906 Page 843 Thursday, November 18, 2004 12:50 PM

Example E-5. sendmailtaglib.xsp

<Xsp:page
xmlns:xsp="http://apache.org/xsp/core/v1"
xmlns:param="http://axkit.org/NS/xsp/param/v1"
xmlns:mail="http://axkit.org/NS/xsp/sendmail/v1"
language="Perl"
>
<page>
<xsp:logic>
if (!<param:email/>) {
<p>You forgot to supply an email address!</p>
}
else {
my $to;
if (<param:subopt/> eq "sub") {
$to = "axkit-users-subscribe@axkit.org";
}
elsif (<param:subopt/> eq "unsub") {
$to = "axkit-users-unsubscribe@axkit.org";
}
<mail:send-mail>
<mail:from><param:user email/></mail:from>
<mail:to><xsp:expr>$to</xsp:expr></mail:to>
<mail:body>
Subscribe or Unsubscribe <param:user email/»>
</mail:body>
</mail:send-mail>
<p>(un)subscription request sent</p>

</xsp:logic>
</page>
</xsp:page>

The only thing missing here is some sort of error handling. When the sendmail taglib
detects an error (either in an email address or in sending the email), it throws an
exception.

Handling Exceptions

The exception taglib, AxKit::XSP::Exception, is used to catch exceptions. The syn-
tax is very simple: rather than allowing different types of exceptions, it is currently a
very simple try/catch block. To use the exceptions taglib, the following has to be
added to httpd.conf:

AxAddXSPTaglib AxKit::XSP::Exception

Then you can implement form validation using exceptions, as Example E-6
demonstrates.

Dynamic Content | 843

é ,appe.27906 Page 844 Thursday, November 18, 2004 12:50 PM

Example E-6. exceptiontaglib.xsp

<Xsp:page
xmlns:xsp="http://apache.org/xsp/core/v1"
xmlns:param="http://axkit.org/NS/xsp/param/v1"
xmlns:except="http://axkit.org/NS/xsp/exception/v1"
language="Perl"
>
<page>
form validation:
<except:try>
<xsp:logic>
if ((<param:number/> > 10) || (0 > <param:number/>)) {
die "Number must be between 0 and 10";
}
if (!<param:name/>) {
die "You must supply a name";
}
Now do something with the params
</xsp:logic>
<p>Values saved successfully!</p>
<except:catch>
<p>Sorry, the values you entered were
incorrect: <except:message/></p>
</except:catch>
</except:try>
</page>

The exact same try/catch (and message) tags can be used for sendmail and for ESQL
(discussed in a moment).

Utilities Taglib

The AxKit::XSP::Util taglib includes some utility methods for including XML from
the filesystem, from a URI, or as the return value from an expression. (Normally an
expression would be rendered as plain text, so a “<” character would be encoded as
“81t;”). The AxKit utilities taglib is a direct copy of the Cocoon utilities taglib, and
as such uses the same namespace as the Cocoon Util taglib, http://apache.org/xsp/
util/va.

Executing SQL

Perhaps the most interesting taglib of all is the ESQL taglib, which allows you to exe-
cute SQL queries against a DBI-compatible database and provides access to the col-
umn return values as strings, scalars, numbers, dates, or even as XML. (Returning
XML requires the utilities taglib.) Like the sendmail taglib, the ESQL taglib throws
exceptions when an error occurs.

One point of interest about the ESQL taglib is that it is a direct copy of the Cocoon
ESQL taglib. There are only a few minor differences between the two, such as how

844 | AppendixE: The AxKit XML Application Server

4~ ~4]e

é ,appe.27906 Page 845 Thursday, November 18, 2004 12:50 PM

columns of different types are returned and how errors are trapped.” Having nearly
identical taglibs helps you to port projects to or from Cocoon. As with all the other
taglibs, ESQL requires the addition of the following to your httpd.conf file:

AxAddXSPTaglib AxKit::XSP::ESQL

Example E-7 uses ESQL to read data from an address-book table. This page demon-
strates that it is possible to reuse the same code for both our list of addresses and
viewing a single address in detail.

Example E-7. esqltaglib.xsp

<xsp:page
language="Perl"
xmlns:xsp="http://apache.org/xsp/core/v1"
xmlns:esql="http://apache.org/xsp/SQL/v2"
xmlns:except="http://axkit.org/NS/xsp/exception/v1"
xmlns:param="http://axkit.org/NS/xsp/param/v1"
indent-result="no"
>
<addresses>
<esql:connection>
<esql:driver>Pg</esql:driver>
<esql:dburl>dbname=phonebook</esql:dburl>
<esql:username>postgres</esql:username>
<esql:password></esql:password>
<except:try>
<esql:execute-query>
<xsp:logic>
if (<param:address_id/>) {
<esql:query>
SELECT * FROM address WHERE id =
<esql:parameter><param:address_id/></esql:parameter>
</esql:query>

else {

<esql:query>

SELECT * FROM address
</esql:query>

</xsp:logic>
<esql:results>
<esql:row-results>
<address>
<esql:get-columns/>
</address>
</esql:row-results>
</esql:results>
</esql:execute-query>

* In Cocoon there are ESQL tags for trapping errors, whereas AxKit uses exceptions.

Dynamic Content | 845

4~ ~4]e

é ,appe.27906 Page 846 Thursday, November 18, 2004 12:50 PM

Example E-7. esqltaglib.xsp (continued)

<except:catch>
Error Occured: <except:message/>
</except:catch>
</except:try>
</esql:connection>
</addresses>
</xsp:page>

The result of running the above through the XSP processor is:

<addresses>

<address>
<id>2¢/id>
<last_name>Sergeant</last name>
<first_name>Matt</first_name>
<title>Mr</title>
<company>AxKit.com Ltd</company>
<email>matt@axkit.com</email>
<classification_id>1</classification_id>
</address>

</addresses>

More XPathScript Details

XPathScript aims to provide the power and flexibility of XSLT as an XML transfor-
mation language, without the restriction of XSLT’s XML-based syntax. Unlike XSLT,
which has special modes for outputting in text, XML, and HTML, XPathScript out-
puts only plain text. This makes it a lot easier than XSLT for people coming from a
Perl background to learn. However, XPathScript is not a W3C specification, despite
being based on XPath, which is a W3C recommendation.

XPathScript follows the basic ASP syntax for introducing code and outputting code
to the browser: use <% %> to introduce Perl code, and <%= %> to output a value.

The XPathScript API

Along with the code delimiters, XPathScript provides stylesheet developers with a
full API for accessing and transforming the source XML file. This API can be used in
conjunction with the delimiters listed above to provide a stylesheet language that is
as powerful as XSLT, yet supports all the features of a full programming language
such as Perl. (Other implementations, such as Python or Java, also are possible.)

Extracting values

A simple example to get us started is to use the API to bring in the title from a Doc-
Book article. A DocBook article title looks like this:

846 | AppendixE: The AxKit XML Application Server

- ad

é ,appe.27906 Page 847 Thursday, November 18, 2004 12:50 PM

<article>
<artheader>
<title>XPathScript - A Viable Alternative to XSLT?</title>

The XPath expression to retrieve the text in the <title> element is:
/article/artheader/title/text()

Putting all this together to make this text into the HTML title, we get the following
XPathScript stylesheet:

<html>
<head>
<title><%= findvalue("/article/artheader/title") %></title>
</head>
<body>
This was a DocBook Article.
We're only extracting the title for now!
<p>
The title was: <%= findvalue("/article/artheader/title") %>
</body>
</html>

Again, we see the XPath syntax being used to find the nodes in the document, along
with the function findvalue(). Similarly, a list of nodes can be extracted (and thus
looped over) using the findnodes(') function:

<%
for my $secti (findnodes("/article/sect1")) {
print $secti->findvalue("title"), "
\n";
for my $sect2 ($secti->findnodes("sect2")) {
print " + ", $sect2->findvalue("title"), "
\n";
for my $sect3 ($sect2->findnodes("sect3")) {
print " + + ", $sect3->findvalue("title"), "
\n";

}

%>

Here we see how we can apply the find* functions to individual nodes as methods,
which makes the node the context node to search from. That is, $node->
findnodes("title") finds <title> child nodes of $node.

Declarative templates

We saw declarative templates earlier in this appendix, in the “Your First AxKit Page”
section. The $t hash is the key to declarative templates. The apply templates() func-
tion iterates over the nodes of your XML file, applying the templates defined in the
$t hash reference as it meets matching tags. This is the most important feature of

More XPathScript Details | 847

4~ ~4]e

é ,appe.27906 Page 848 Thursday, November 18, 2004 12:50 PM

*

XpathScript, because it allows you to define the appearance of individual tags with-
out having to do your own iteration logic. We call this declarative templating.

The keys of $t are the names of the elements, including namespace prefixes where
appropriate. When apply templates() is called, XPathScript tries to find a member
of $t that matches the element name.

The following subkeys define the transformation:

pre
Output to occur before the tag

post
Output to occur after the tag

prechildren
Output to occur before the children of this tag are written

postchildren
Output to occur after the children of this tag are written

prechild
Output to occur before every child element of this tag

postchild

Output to occur after every child element of this tag

showtag
Set to a false value (generally zero) to disable rendering of the tag itself

testcode
Code to execute upon visiting this tag

More details about XPathScript can be found on the AxKit web site, at http://axkit.
org/.

XSLT

One of the most important technologies to come out of the W3C is eXtensible
Stylesheet Language Transformations (XSLT). XSLT provides a way to transform one
type of XML document into another using a language written entirely in XML. XSLT
works by allowing developers to create one or more template rules that are applied to
the various elements in the source document to produce a second, transformed doc-
ument.

While the basic concept behind XSLT is quite simple (apply these rules to the ele-
ments that match these conditions), the finer points of writing good XSLT
stylesheets is a huge topic that we could never hope to cover here. We will instead
provide a small example that illustrates the basic XSLT syntax.

First, though, we need to configure AxKit to transform XML documents using an
XSLT processor. For this example, we will assume that you already have the

848 | AppendixE: The AxKit XML Application Server

%

ﬁ

*@%

é ,appe.27906 Page 849 Thursday, November 18, 2004 12:50 PM

GNOME XSLT library (libxmi2 and libxslt, available at hitp://xmlsoft.org/) and its
associated Perl modules (XML: : LibXML and XML: : LibXSLT) installed on your server.

Adding this line to your httpd.conf file tells AxKit to process all XML documents with
a stylesheet processing instruction whose type is “text/xsl” with the LibXSLT lan-
guage module:

AxAddStyleMap text/xsl Apache::AxKit::Language::LibXSLT

Anatomy of an XSLT Stylesheet
All XSLT stylesheets contain the following;:
* An XML declaration (optional)

* An <xsl:stylesheet> element as the document’s root element

* Zero or more template rules

Consider the following bare-bones stylesheet:

<?xml version="1.0"?>

<xsl:stylesheet
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">
<xsl:template match="/">

<!-- the content for the output document contained here -->

</xsl:template>

</xsl:stylesheet>

Note that the root template (defined by the match="/" attribute) will be called with-
out regard for the contents of the XML document being processed. As such, this is
the best place to put the top-level elements that we want to include in the output of
each and every document being transformed with this stylesheet.

Template Rules and Recursion

Let’s take our basic stylesheet and extend it to allow us to transform the DocBook
XML document presented in Example E-8 into HTML.

Example E-8. camelhistory.xml

<?xml version="1.0"?>
<book>
<title>Camels: An Historical Perspective</title>
<chapter>
<title>Chapter One</title>
<para>
It was a dark and <emphasis>stormy</emphasis> night...
</para>
</chapter>
</book>

XSLT | 849

é ,appe.27906 Page 850 Thursday, November 18, 2004 12:50 PM

First we need to alter the root template of our stylesheet:

<xsl:template match="/">
<html>
<head><xsl:copy-of select="/book/title"/></head>
<body>
<xsl:apply-templates/>
</body>
</html>
</xsl:template>

Here we have created the top-level structure of our output document and copied
over the book’s <title> element into the <head> element of our HTML page. The
<xsl:apply-templates/> element tells the XSLT processor to pass on the entire con-
tents of the current element (in this case the <book> element, since it is the root-level
element in the source document) for further processing.

Now we need to create template rules for the other elements in the document:

<xsl:template match="chapter">
<div class="chapter">
<xsl:attribute name="id">chapter id<xsl:number
value="position()" format="A"/></xsl:attribute>
<xsl:apply-templates/>
</div>
</xsl:template>
<xsl:template match="para">
<p><xsl:apply-templates/></p>
</xsl:template>

Here we see more examples of recursive processing. The <para> and <chapter> ele-
ments are transformed into <div> and <p> elements, and the contents of those ele-
ments are passed along for further processing. Note also that the XPath expressions
used within the template rules are evaluated in the context of the current element
being processed. XSLT also maintains what is called the “current node list,” which is
the list of nodes being processed. In the example above, this is the list of all chapter
elements. This is an example of XSLT using “least surprise”.

While this sort of recursive processing is extremely powerful, it can also be quite a
performance hit” and is necessary only for those cases where the current element con-
tains other elements that need to be processed. If we know that a particular element
will not contain any other elements, we need to return only that element’s text value.
<xsl:template match="emphasis">
<xsl:value-of select="."/>
</xsl:template>
<xsl:template match="chapter/title">
<h2><xsl:value-of select="."/></h2>

* Although, since XSLT engines tend to be written in C, they are still very fast (often faster than most compiled
Perl templating solutions).

850 | AppendixE: The AxKit XML Application Server

4~ ~4]e

é ,appe.27906 Page 851 Thursday, November 18, 2004 12:50 PM

</xsl:template>

<xsl:template match="book/title">
<h1><xsl:value-of select="."/></h1>

</xsl:template>

</xsl:stylesheet>

Look closely at the last two template elements. Both match a <title> element, but
one defines the rule for handling titles whose parent is a book element, while the
other handles the chapter titles. In fact, any valid XPath expression, XSLT function
call, or combination of the two can be used to define the match rule for a template
element.

Finally, we need only save our stylesheet as docbook-snippet.xsl. Once our source
document is associated with this stylesheet (see the section titled “Putting Every-
thing Together” later in this appendix), we can point our browser to camelhistory.
xml, and we’ll see the output generated by the code in Example E-9.

Example E-9. camelhistory.html

<?xml version="1.0"?>
<html>
<head>
<title>Camels: An Historical Perspective</title>
</head>
<body>
<h1>Camels: An Historical Perspective</h1>
<div class="chapter" id="Chapter One">
<h2>Chapter One</h2>
<p>
It was a dark and stormy night...
</p>
</div>
</body>
</html>

The entire stylesheet is rendered in Example E-10.

Example E-10. docbook-snippet.xsl

<?xml version="1.0"?>

<xsl:stylesheet
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">

<xsl:template match="/">

<html>
<head><xsl:copy-of select="/book/title"/></head>
<body>

<xsl:apply-templates/>

</body>

</html>

</xsl:template>

XSLT | 851

é ,appe.27906 Page 852 Thursday, November 18, 2004 12:50 PM

Example E-10. docbook-snippet.xsl (continued)

<xsl:template match="chapter">

<div class="chapter">
<xsl:attribute name="id">chapter_ id<xsl:number
value="position()" format="A"/></xsl:attribute>
<xsl:apply-templates/>

</div>

</xsl:template>

<xsl:template match="para">

<p><xsl:apply-templates/></p>

</xsl:template>

<xsl:template match="emphasis">

<xsl:value-of select="."/>
</xsl:template>
<xsl:template match="chapter/title">
<h2><xsl:value-of select="."/></h2>
</xsl:template>
<xsl:template match="book/title">
<h1><xsl:value-of select="."/></h1>
</xsl:template>
</xsl:stylesheet>

Learning More

We have only scratched the surface of how XSLT can be used to transform XML
documents. For more information, see the following resources:

* The XSLT specification: http://www.w3.0rg/TR/xslt/

* Miloslav Nic’s XSLT reference: http://www.zvon.org/xxl/XSLTreference/Output/
index.html

* Jeni Tennison’s XSLT FAQ: http://www.jenitennison.com/xslt/index.html

Putting Everything Together

The last key piece to AxKit is how everything is tied together. We have a clean sepa-
ration of logic, presentation, and content, but we’ve only briefly introduced using
processing instructions for setting up the way a file gets processed through the AxKit
engine. A generally better and more scalable way to work is to use the AxKit configu-
ration directives to specify how to process files through the system.

Before introducing the configuration directives in detail, it is worth looking at how
the W3C sees the evolving web of new media types. The HTML 4.0 specification
defines eight media types:

screen
The default media type, for normal web browsers.

tty
For tty-based devices (e.g., the Lynx web browser).

852 | AppendixE: The AxKit XML Application Server

4~ ~4]e

é ,appe.27906 Page 853 Thursday, November 18, 2004 12:50 PM

printer
For printers requesting content directly (rather than for printable versions of a
HTML page). Also for PDF or other paginated content.

handheld
For handheld devices. You need to distinguish between WAP, cHTML, and
other handheld formats using styles, because the W3C did not make this distinc-
tion when it defined the media types.

braille
For braille interpreters.

tv
For devices with a TV-based browser, such as Microsoft’s WebTV and Sega’s
Dreamcast.
projection
For projectors or presentations.
aural
For devices that can convert the output to spoken words, such as VoiceXML.

AxKit allows you to plug in modules that can detect these different media types, so
you can deliver the same content in different ways. For finer control, you can use
named stylesheets. In named stylesheets, you might have a printable page output to
the screen media type. Named stylesheets are seen on many magazine sites (e.g., hitp:
/ftake23.0rg/) for displaying multi-page articles.

For example, to map all files with the extension .dkb to a DocBook stylesheet, you
would use the following directives:
<Files *.dkb>

AxAddProcessor text/xsl /stylesheet/docbook.xsl
</Files>

Now if you wanted to display those DocBook files on WebTV as well as ordinary
web browsers, but you wanted to use a different stylesheet for WebTV, you would
use:
<Files *.dkb>
<AxMediaType tv>
AxAddProcessor text/xsl /stylesheets/docbook tv.xsl
</AxMediaType>
<AxMediaType screen>
AxAddProcessor text/xsl /stylesheets/docbook screen.xsl
</AxMediaType>
</Files>

Now let’s extend that to chained transformations. Let’s say you want to build up a
table of contents the same way in both views. One way you can do it is to modular-
ize the stylesheet. However, it’s also possible to chain transformations in AxKit, sim-
ply by defining more than one processor for a particular resource:

Putting Everything Together | 853

4~ ~4]e

é ,appe.27906 Page 854 Thursday, November 18, 2004 12:50 PM

<Files *.dkb>
AxAddProcessor text/xsl /stylesheets/docbook toc.xsl
<AxMediaType tv>
AxAddProcessor text/xsl /stylesheets/docbook tv.xsl
</AxMediaType>
<AxMediaType screen>
AxAddProcessor text/xsl /stylesheets/docbook screen.xsl
</AxMediaType>
</Files>
Now the TV-based browsers will see the DocBook files transformed by docbook_

toc.xsl, with the output of that transformation processed by dochook_tv.xsl.
This is exactly how we would build up an application using XSP:

<Files *.xsp>
AxAddProcessor application/x-xsp .
<AxMediaType tv>
AxAddProcessor text/xsl /stylesheets/page2tv.xsl
</AxMediaType>
<AxMediaType screen>
AxAddProcessor text/xsl /stylesheets/page2html.xsl
</AxMediaType>
</Files>
This resolves the earlier issue we had where the XSP did not output HTML, but
something entirely different. Now we can see why—because this way we can build

dynamic web applications that work easily on different devices!

There are four other configuration directives similar to AxAddProcessor. They take
two additional parameters: one that specifies a particular way to examine the file
being processed and one to facilitate the match. The directives are:

AxAddRootProcessor
Takes a root element name to match the first (root) element in the XML docu-
ment. For example:
AxAddRootProcessor text/xsl article.xsl article
processes all XML files with a root element of <article> with the article.xsl
stylesheet.

AxAddDocTypeProcessor
Processes XML documents with the given XML public identifier.

AxAddDTDProcessor

Processes all XML documents that use the DTD given as the third option.
AxAddURIProcessor

Processes all resources at the matching URI (which is a Perl regex).

This option was added for two reasons: because the <LocationMatch> directive is
not allowed in an .htaccess file, and because the built-in Apache regular expres-
sions are not powerful enough—for example, they cannot do negative matches.

854 | AppendixE: The AxKit XML Application Server

4~ ~4]e

é ,appe.27906 Page 855 Thursday, November 18, 2004 12:50 PM

Finally, the <AxStyleName> block allows you to specify named stylesheets. An exam-
ple that implements printable/default views of a document might be:

<AxMediaType screen>
<AxStyleName #default>
AxAddProcessor text/xsl /styles/article html.xsl
</AxStyleName>
<AxStyleName printable>
AxAddProcessor text/xsl /styles/article html print.xsl
</AxStyleName>
</AxMediaType>

By mixing the various embedded tags, it is possible to build up a very feature-rich
site map of how your files get processed.

More Reasons to Use AxKit

Hopefully this will have whetted your appetite to play with AxKit. If you still need
convincing, here are some extra things AxKit can do:

AxKit can work with filter-aware modules and, instead of XSP, use other tem-
plating systems (such as Mason) to produce XML structures that will be styled
on the fly after being passed to AxKit.

XSLT, XSP, and XPathScript aren’t the only possible processors. You can fairly
easily create a new type of processor (such as a graph-outputting processor that
would transform XML into charts, or rasterize some SVG).

Apache configuration isn’t the only way to control AxKit. You can create a

ConfigReader that reads the configuration from another system, such as an XML
file on disk.

There are ways to choose stylesheets on the fly—for instance, to allow people to
see the site with the design they prefer, based on cookies or a query string.

AxKit has an intelligent and powerful caching system that can be controlled in
various ways or replaced by a custom cache if needed.

You don’t need to fetch the initial content from the filesystem. The Provider
interface allows you to return data from wherever Perl can get it (e.g., a content-
management system).

For more information, help, support, and community chat, please visit the web site
at http://axkit.org/ and join in the discussions on the mailing lists, where you will find
like minded people building a range of solutions.

More Reasons to Use AxKit | 855

